
H2020–FETHPC–2014: GA 671633

D4.1

Computational Kernels for Preconditioned
Iterative Methods

Prototype software, phase 1

October 2016

NLAFET D4.1: Computational Kernels

Document information

Scheduled delivery 2016-11-01
Actual delivery (2016-11-01)
Version 1
Responsible partner INRIA

Dissemination level

PU — Public

Revision history

Date Editor Status Ver. Changes
2016-10-17 Inria members Draft 0.1 Initial version of document pro-

duced
2016-10-31 Inria members Final document 1 Final version based on com-

ments from internal reviewers

Author(s)

Alan Ayala, Simplice Donfack, Laura Grigori, INRIA

Internal reviewers

Carl Christian Kjelgaard Mikkelsen, UMU
Florent Lopez, STFC

Contributors

Copyright

This work is c©by the NLAFET Consortium, 2015–2018. Its duplication is allowed only
for personal, educational, or research uses.

Acknowledgements

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the grant agreement number 671633.

http://www.nlafet.eu/ 1/40

http://www.nlafet.eu/

NLAFET D4.1: Computational Kernels

Table of Contents
1 Executive Summary 5

2 Introduction 5

3 Using PreAlps library 6
3.1 Purpose . 6
3.2 Availability of the software . 6
3.3 Installation . 6
3.4 Input data formats . 7

4 Sparse Matrix-Matrix product 8
4.1 spMSV routine . 8
4.2 Implemented routines . 10
4.3 Example program . 12

5 Sparse tournament pivoting factorization 15
5.1 Column tournament pivoting . 15
5.2 QR factorization . 17
5.3 CUR factorization . 19
5.4 Example program . 21

6 Experiments 23
6.1 Environment . 23
6.2 Sparse matrix matrix product . 23

6.2.1 Description of test matrices . 23
6.2.2 Performance of spMSV . 23

6.3 Low rank approximation . 26
6.3.1 Approximation results . 26
6.3.2 Scalability results . 28

7 Routines 31
7.1 Sequential Utility routines . 31
7.2 Parallel Utility routines . 33
7.3 spMSV routine . 34
7.4 Tournament pivoting routines . 36

8 Conclusion 38

9 Acknowledgments 38

http://www.nlafet.eu/ 2/40

http://www.nlafet.eu/

NLAFET D4.1: Computational Kernels

List of Figures
1 LFAT5 matrix from University of Florida sparse matrix collection. The

matrix on the left is sparse, while the matrix on the right is sparse but
structured (as arising from enlarged Krylov subspace methods). 8

2 LFAT5 matrix partitioned in 4 parts using K-way partitioning. 9
3 Communication pattern used for the sparse matrix-matrix product. Blue

squares in A represent blocks that can be computed locally, while green
squares represent blocks that require communication to be computed. Pro-
cessor P0 needs to communicate with processor P3 in order to compute
the last block column of its local submatrix. For matrix C, red squares
represent the new blocks created after the multiplication. 10

4 Flat tree inside a local processor . 16
5 Binary tree among all processors . 17
6 Speedup of SPMSV for 32 and 128 processors with respect to MKL(sparse x

dense) and MKL(sparse x sparse). 24
7 Time of each operation of spMSV for the matrix Thermal2 when the num-

ber of processor varies. 25
8 Speedup of spMSV for T=32. At the left, the test matrices have less than

12 millions of non-zeros. At the right, the test matrices have more than
300 millions of non-zeros. 25

9 Singular values approximation using QR with column pivoting and QR
with tournament pivoting. 26

10 Approximation of image of size 1345× 1024 using different algorithms, im-
age source: https://en.wikipedia.org/wiki/Albert_Einstein#/media 27

11 Scalability for small matrices. 29
12 Parallel efficiency for small matrices. 29
13 Scalability for large matrices up to 200 cores. 30
14 Scalability for large matrices up to 512 cores. 31

http://www.nlafet.eu/ 3/40

https://en.wikipedia.org/wiki/Albert_Einstein#/media
http://www.nlafet.eu/

NLAFET D4.1: Computational Kernels

List of Tables
1 Description of matrices sorted by number of nonzeros 24
2 Test matrices generated in MATLAB . 26
3 Scalability for small matrices, time in seconds to select k = 16 columns,

with LAPACK and without METIS. 28
4 Scalability up to 200 processors, time in seconds to select k = 256 columns,

with MKL and METIS. 30
5 Scalability up to 512 processors, time in seconds to select k = 256 columns,

with LAPACK and METIS. 31

http://www.nlafet.eu/ 4/40

http://www.nlafet.eu/

NLAFET D4.1: Computational Kernels

1 Executive Summary
One of the main challenges in high performance computing is the increased cost of com-
munication. Several works show that there is an exponentially increasing gap between
the time required to compute one floating point operation by one processor and the time
required to communicate data between different levels of the memory hierarchy or be-
tween different processors [16]. Because of this gap, many algorithms do not scale to
large numbers of processors. In order to address this difficulty, we have developed a new
class of algorithms that we refer to as communication avoiding algorithms. These algo-
rithms drastically reduce the communication cost with respect to classic algorithms, or
even minimize it when possible.

The goal of WP4 is to address the scalability problem of existing iterative methods by
focusing on two main aspects: the reformulation of Krylov subspace methods to allow a
drastic reduction in the number of global communication instances with respect to classic
formulations, and the design of communication avoiding preconditioners to accelerate the
convergence of iterative methods.

In this deliverable, we focus on computational kernels that are requested by our com-
munication avoiding iterative methods. We propose highly efficient kernels such as sparse
matrix-matrix product and sparse low rank approximation. Our implementation leads to
a library that can be used by the other work packages, or that can be incorporated in
other well-known libraries.

2 Introduction
Solving large sparse linear systems of equations Ax = b is essential in many scientific and
engineering applications. Direct methods can be used to solve those systems and they
achieve a high quality solution in a fixed number of operations. Hence these methods are
known to be very robust and normally they are limited only by the available memory.
If a direct method is not suitable (either it is too slow or requires too much memory),
the alternative is to use an iterative method. Preconditioners are very often necessary to
accelerate the convergence of iterative methods. The focus of WP4 is on preconditioned
iterative methods based on Krylov subspace solvers. Each iteration of a typical Krylov
subspace solver involves matrix-vector multiplications and several dot products. These
dot products related to the orthogonalization of the Krylov subspace require collective
communication among all processors. This collective communication does not scale to
very large number of processors, and thus it is a main bottleneck in the scalability of
Krylov subspace methods.

To increase the scalability of Krylov subspace solvers, our research in NLAFET fo-
cuses on enlarged Krylov subspace methods [18], a new approach that consists of enlarg-
ing the Krylov subspace by a maximum of T vectors per iteration, based on a domain
decomposition of the graph of the input matrix. The solution of the linear system is
sought in the enlarged subspace, which is a superset of the classic subspace. The enlarged
Krylov projection subspace methods lead to faster convergence in terms of iterations and
parallelizable algorithms with less communication, with respect to Krylov methods. In
addition, multiplying a matrix with multiple vectors at once may lead to a better resource

http://www.nlafet.eu/ 5/40

http://www.nlafet.eu/

NLAFET D4.1: Computational Kernels

utilization.
The goal of this document is to describe the computational kernels that we have

developed during the first year of NLAFET. These kernels are the multiplication of a
sparse matrix with a set of vectors (we refer to this operation as sparse matrix matrix
product) and the computation of a low rank approximation of a sparse matrix. These
two kernels are building blocks of the preconditioned enlarged Krylov subspace solvers
that we develop in NLAFET. The prototype codes that are part of this deliverable will
continue to be optimized in the following year of this project.

In summary, we describe a library that provides a set of linear algebra routines and
optimized kernels for iterative methods, that we refer to as PreAlps. The library provides
a routine for computing the sparse matrix matrix product and routines for computing a
low rank approximation of a sparse matrix based on communication avoiding sparse QR
and CUR factorization kernels. The library also provides several sequential and parallel
routines that can be used to perform advanced operations on matrices stored using CSR
format. Most of the parallel routines assume that the matrix is already distributed among
processors by using a uni-dimensional (1D) block rows distribution. However, we provide
routines for creating, converting, and distributing a CSR matrix among processors.

3 Using PreAlps library

3.1 Purpose
The PreAlps library is a prototype software developed as the first part of the work
supported by the NLAFET project. The second part will be devoted to the development
and the addition of enlarged Krylov solvers and new preconditioners that use the routines
implemented so far in PreAlps. In this report, we present sparse matrix matrix product
and sparse communication avoiding low rank approximation kernels, as well as sequential
and parallel utility routines implemented in the library.

3.2 Availability of the software
The software is available on the NLAFET repository in the folder

https://github.com/NLAFET/preAlps.

This is a prototype software that will be improved over the following months and it is not
yet publicly available. The next version of the software will be made publicly available.

However, the software can be made available upon request. Anyone interested in
downloading and testing the software should send an email to Laura.Grigori@inria.fr.

3.3 Installation
PreAlps has been developed with the aim of being simple to use and flexible, and thus
we have reduced as much as possible the number of external libraries used. However,
our parallel functions rely on several highly optimized sequential codes. Our library uses
routines from SuiteSparse [11] such as local sparse QR factorizations, METIS for graph

http://www.nlafet.eu/ 6/40

https://github.com/NLAFET/preAlps
Laura.Grigori@inria.fr
http://www.nlafet.eu/

NLAFET D4.1: Computational Kernels

partitioning [24], and it calls BLAS routines from LAPACK [1] or MKL [30] for a local
dense QR factorization. Several graph or hypergraph partitioning tools supported by the
library such as ParMETIS [25] and PaToH [6] can be installed separately and linked with
the library.

1. Download SuiteSparse from http://faculty.cse.tamu.edu/davis/suitesparse.
html.

2. Install Suitsparse following the instructions in its Readme file, generally it is enough
to type make in the main directory. To customize the installation, edit the config-
uration file SuiteSparse_config/SuiteSparse_config.mk where you can set a
compiler, MPI version, etc.

3. At the root of the preAlps folder, edit the make.inc file setting up the appropriate
path for MKL or LAPACK, and SuiteSparse.

4. Next, type make to create the library lib/libPreAlps.a and the test programs.

5. Now, functions from the lib PreAlps can be called by a program, just including
their header file. See section 7 for the list of callable functions. We have created a
test directory with prototype programs.

3.4 Input data formats
Most of the routines in PreAlps require a matrix stored into a compressed sparse row
format (CSR). The test programs read matrices from stdin in MatrixMarket format [5]
by using the routine preAlps_matrix_readmm_csr.

In this document we present blocks of code to illustrate how the routines are imple-
mented or called in C language. The following example shows how to read a matrix from
a matrix market file and how to print it.

1 /* Including headers */
2 #include "preAlps_matrix.h"
3

4 int main(int argc, char **argv){
5

6 int m, n, nnz, *xa, *ja;
7 double *a;
8 char matrixName[]="cage4.mtx";
9

10 /* Reading the matrix file */
11 preAlps_matrix_readmm_csr(matrixName, &m, &n, &nnz, &xa, &ja, &a);
12 preAlps_matrix_print(MATRIX_CSR, m, xa, ja, a, "CSR example matrix");
13 ...

In next sections, we assume that the loading (and the distribution) of the matrix has
been already performed.

http://www.nlafet.eu/ 7/40

http://faculty.cse.tamu.edu/davis/suitesparse.html
http://faculty.cse.tamu.edu/davis/suitesparse.html
http://www.nlafet.eu/

NLAFET D4.1: Computational Kernels

4 Sparse Matrix-Matrix product

4.1 spMSV routine
In this section, we present the routine spMSV (sparse matrix-set of vectors product) which
is used to compute the product of two sparse matrices A and B, where A is sparse and
B is formed by a set of vectors.

spMSV will be used by the enlarged Krylov subspace solvers that we develop in
NLAFET [18]. As such, we take into account the specific structure of the matrix B
that arises in those Krylov subspace methods. Figure 1 presents an example of such a
matrix. The matrix A on the left of the figure is a sparse matrix coming from the Uni-
versity of Florida sparse matrix collection [13], referred to as LFAT5, while the matrix B
on the right is formed by a set of structured vectors.

It is important to note that spMSV can also be used to compute a parallel sparse
matrix-vector multiplication or a parallel sparse matrix-dense matrix multiplication as
those two operations are instances of our algorithm when the matrix B is formed by only
one column or a set of dense vectors respectively.


0 1 2 3 4 5 6 7 8 9 10 11 12 13
× × ×

× ×
× ×

× × × ×
× × × ×

× × ×
× × ×

× × × × ×
× × × × ×

× ×
× ×

× × × ×
× × × ×

× × ×





×
×
×
×

×
×
×

×
×
×

×
×
×
×


Figure 1: LFAT5 matrix from University of Florida sparse matrix collection. The matrix
on the left is sparse, while the matrix on the right is sparse but structured (as arising
from enlarged Krylov subspace methods).

We start by permuting the matrix A by using a graph or a hypergraph partitioning tool
to obtain a matrix whose structure is displayed on the left of Figure 2. It has been shown
in [31] that graph partitioning can be used to reduce the communication volume in sparse
matrix-vector product while keeping good load balance between processors. In [7], the
authors show that hypergraphs are more suitable to model the communication volume
for non-symmetric matrices. spMSV requires the matrices A and B to be partitioned
and distributed among processors before calling the routine. To do so, the final user
could use his own partitioning tool to decompose the matrix A, or use our wrapper
interface to partition the matrix using well-known partitioning tools such as METIS [24],
ParMETIS [25], and PaToH [6]. In the remaining of this section we consider that the
matrix A has been permuted to obtain the structure displayed on the left of Figure 2.
The matrix B is formed by the set of vectors arising from enlarged Krylov subspace
methods [18] and has the specific structure presented on the right of Figure 2.

http://www.nlafet.eu/ 8/40

http://www.nlafet.eu/

NLAFET D4.1: Computational Kernels



0 3 4 8 1 5 9 2 6 10 7 11 12 13
× × ×
× × × ×
× × × ×

× × × × ×
× ×
× × ×

× ×
× ×
× × ×

× ×
× × × × ×

× × × ×
× × × ×

× × ×





×
×
×
×

×
×
×

×
×
×

×
×
×
×


Figure 2: LFAT5 matrix partitioned in 4 parts using K-way partitioning.

Algorithm 1 presents spMSV for computing the product of two matrices A and B. We
describe in the following the different steps of the algorithm.

Communication pattern (Lines 1 and 2): determines the communication that will
be performed during the multiplication. This step allows each processor to determine
its neighbors, that is the other processors with which it will exchange data. From the
decomposition obtained in Figure 2, we build AS and BS, two dense matrices of size
P ×P and P × T respectively, where P is the number of processors and T is the number
of block columns of the matrix B. As the matrix A is initially distributed in block rows,
each processor first creates a local dense vector AS_local of size P and fills it as follows:
AS_local[J] = 1 if the block J of its local matrix A contains at least one non-zero element,
and AS_local[J] = 0 if the block J does not contain any non-zero element. Then a global
collective operation is performed among all the processors to gather each AS_local in
order to compute the global dense matrix AS. The same approach is used to build a
global dense BS from the matrix B.

AS and BS represent the communication pattern of spMSV because they indicate
which processor holds a block in a block row of A that will be multiplied by a block in a
block column of B. As illustrated in Figure 3 using 4 processors, blue and green squares
represent the blocks of the initial matrix A and B that contain at least one non-zero
element, while gray squares represent empty blocks. The multiplication of each non-zero
row block A(I,K) of A with a column block B(K, J) of B requires a communication when
these blocks do not belong to the same processor. As illustrated in the same figure, green
squares indicate blocks that cause communication. For example, the last row block of A
held by processor P0 will be multiplied by the last column block of B held by processor
P3, which means the former block should be sent to processor P0.

Asynchronous communication (Line 3 to 25): Asynchronously sends and receives
blocks of the matrices needed for the matrix multiplication from the neigbors. We use
asynchronous requests in MPI to send and receive data, so we overlap communication
with computation. For performance reasons, all the processors first initiate asynchronous
receives of the blocks they need as shown in line 11 of the algorithm, then proceed to the
asynchronous sends of blocks required by the other processors as shown in line 22.

http://www.nlafet.eu/ 9/40

http://www.nlafet.eu/

NLAFET D4.1: Computational Kernels

Figure 3: Communication pattern used for the sparse matrix-matrix product. Blue
squares in A represent blocks that can be computed locally, while green squares represent
blocks that require communication to be computed. Processor P0 needs to communicate
with processor P3 in order to compute the last block column of its local submatrix. For
matrix C, red squares represent the new blocks created after the multiplication.

Structure prediction (Line 3 to 34): performs a preprocessing step to predict the
structure of the matrix C. This could be seen as performing a "symbolic sparse matrix
multiplication". To do so, each processor needs to compute the product of the two dense
matrices AS and BS. As the number of processors is usually small compared to the global
matrix size, the cost of the preprocessing step is relatively small. We start by supposing
that the matrix C has the same sparsity structure as the matrix B, and as new entries
are added during the preprocessing step, we increase the amount the memory required for
the matrix C. As illustrated in Figure 3, these new entries are represented by red squares.
This allows to build the block structure CS of the resulting matrix C and to allocate the
required memory using the routine createMatrixFromStructure.

Local matrix-matrix product(Line 35 to 50): performs a product of any non-zero
blocks A(I,K) and B(K, J), and sums the result with the resulting block C(I, J). First,
each processor computes its blocks of C that do not require any communication. Then
it waits for incoming blocks, as presented in line 45 of the algorithm. For each block of
B received, it performs the multiplication and it sums the result with the corresponding
block of C.

4.2 Implemented routines
The implementation of spMSV leads to several routines in preAlps that can be summa-
rized as follows:
Matrix loading and distribution: provides a routine to load a matrix from matrix
market file and distribute it to other processors using a uni-dimensional (1D) block rows
distribution.
Matrix partitioning: provides a wrapper interface to partition the matrix sequentially

http://www.nlafet.eu/ 10/40

http://www.nlafet.eu/

NLAFET D4.1: Computational Kernels

or in parallel, using a graph or a hypergraph to represent its structure. For the sequential
case, the input matrix is partitioned on a single processor using METIS [24] or PATOH [6],
then the matrix is permuted to group together the rows and column belonging to the same
domain, and finally the resulting matrix is redistributed to all the processors. The matrix
can also be partitioned in parallel using ParMETIS [25].
Communication pattern: provides a set of routines to determine the communication
pattern of the matrices. This allows each processor to determine with which processor it
exchanges data during a specific operation.
Parallel matrix matrix product: Provides a routine to perform a local sparse matrix-
matrix product.

http://www.nlafet.eu/ 11/40

http://www.nlafet.eu/

NLAFET D4.1: Computational Kernels

Algorithm 1 spMSV (input:Matrix A, input:Matrix B, output:Matrix C)

1: AS = createBlockStruct(A);
2: BS = createBlockStruct(B);
3: /*Create an array for the structure prediction of C*/
4: CS = zeros(T)
5: /* Initiate the reception of the block I need */
6: Nrecv = 0;
7: I = my_rank;
8: for J = 0 to P − 1 do
9: for K = 0 to P − 1 do
10: if I! = K && AS(I, K)! = 0 && BS(K, J)! = 0 then
11: Request Block B(K,J) from processor K
12: CS[J] = 1;
13: Nrecv = Nrecv + 1;
14: end if
15: end for
16: end for
17: /* Initiate the sending of the block the other processors need */
18: K = my_rank;
19: for J = 0 to P − 1 do
20: for I = 0 to P − 1 do
21: if I! = K && AS(I, K)! = 0 && BS(K, J)! = 0 then
22: Send Block B(K,J) from processor I
23: end if
24: end for
25: end for
26: /* Finalize the structure prediction of C */
27: I = my_rank;
28: for J = 0 to P − 1 do
29: K = my_rank;
30: if I! = K && AS(I, K)! = 0 && BS(K, J)! = 0 then
31: CS[J] = 1;
32: end if
33: end for
34: C = createMatrixFromStructure(CS);
35: /* Compute product using local blocks */
36: I = my_rank;
37: for J = 0 to P − 1 do
38: K = my_rank;
39: if I! = K && AS(I, K)! = 0 && BS(K, J)! = 0 then
40: /* compute c(I,J) += A(I,K)*B(K,J) */
41: C(I,J) += subMatrix_Product(A(K,J), B(K,J));
42: end if
43: end for
44: /* Receive blocks and update the results */
45: while Nrecv > 0 do
46: Wait a block from any processor
47: Determine the coordinates J, and K from the Message TAG
48: /* compute c(I,J) += A(I,K)*B(K,J) */
49: C(I,J) += subMatrix_Product(A(K,J), B(K,J));
50: end while
51: Check all sending operations are completed
52: Free(AS, BS, CS);

4.3 Example program
The following listing is an abbreviated version of the sparse matrix-matrix multiplication
routine. It illustrates how spMSV can be used in an example program.

http://www.nlafet.eu/ 12/40

http://www.nlafet.eu/

NLAFET D4.1: Computational Kernels

1 #include <stdlib.h>
2 #include <string.h>
3 #include <mpi.h>
4 #include "preAlps_matrix.h"
5 #include "preAlps_matrix_mp.h"
6 #include "spMSV.h"
7

8 void main(int argc, char *argv[]) {
9 MPI_Comm comm;

10 char matrix_filename[150]="";
11 int m, n, nnz, matrixDim[3];
12 int mloc, nzloc, nloc, rloc, nparts, b_nparts;
13 int *xa = NULL, *ja = NULL, *xb = NULL, *jb = NULL, *xc = NULL, *jc = NULL;
14 double *a = NULL, *b = NULL, *c = NULL, *A, *v;
15 int A_size, *ncounts=NULL, *part, *b_ncolcounts = NULL;
16 int i, ds, nrhs = -1, nbprocs, my_rank, root = 0;
17 int spmsv_options[3] = {0, 0, 0};
18

19 /* Start MPI*/
20 MPI_Init(&argc, &argv);
21 MPI_Comm_dup(MPI_COMM_WORLD, &comm);
22 MPI_Comm_size(comm, &nbprocs);
23 MPI_Comm_rank(comm, &my_rank);
24

25 /* Get user parameters */
26 for(i=1;i<argc-1;i+=2){
27 if (strcmp(argv[i],"-mat") == 0) strcpy(matrix_filename,argv[i+1]);
28 if (strcmp(argv[i],"-nrhs") == 0) nrhs = atoi(argv[i+1]);
29 }
30

31 /* Read the matrix file on processor 0 in csr format */
32 if(my_rank==0){
33 preAlps_matrix_readmm_csr(matrix_filename, &m, &n, &nnz, &xa, &ja, &a);
34 /* Prepare the matrix dimensions for the broadcast */
35 matrixDim[0] = m; matrixDim[1] = n; matrixDim[2] = nnz;
36 }
37

38 /* Broadcast the global matrix dimension among all processors */
39 MPI_Bcast(&matrixDim, 3, MPI_INT, root, comm);
40 m = matrixDim[0]; n = matrixDim[1]; nnz = matrixDim[2];
41

42 /* Initialize the vector v */
43 v = (double *) malloc(m*sizeof(double));
44 if(my_rank==0) for(i=0;i<m;i++) v[i] = i*1.0;
45

46 /* Set the number of partitions to create. */
47 nparts = nbprocs;
48 /* Partition the matrix */
49 part = (int *) malloc((m*sizeof(int)));
50 if(my_rank==root){
51 preAlps_matrix_partition_sequential(m, xa, ja, nparts, part);
52 }
53 /* Broadcast the partitioning array to all processors */
54 MPI_Bcast(part, m, MPI_INT, root, comm);

http://www.nlafet.eu/ 13/40

http://www.nlafet.eu/

NLAFET D4.1: Computational Kernels

55 /* Redistribute the matrix according to the global partitioning array ’part’ */
56 preAlps_matrix_kpart_redistribute(comm, m, n, &xa, &ja, &a, &mloc, part);
57

58 /* Compute the number of columns in each block column */
59 ncounts = (int *) malloc(nbprocs*sizeof(int));
60 for(i=0;i<nparts;i++) ncounts[i] = 0;
61 for(i=0;i<m;i++) ncounts[part[i]]++;
62 /* Determine the dimension of the local matrix */
63 mloc = ncounts[my_rank]; nloc = n; nzloc = xa[mloc]; rloc = nrhs;
64 /* Number of block columns to create (assume one column per part) */
65 b_nparts = rloc;
66

67 /* Allocate memory for the matrix B */
68 xb = (int *) malloc((mloc+1)*sizeof(int));
69 jb = (int *) malloc(nzloc*sizeof(int));
70 b = (double *) malloc(nzloc*sizeof(double));
71

72 /* Distribute v as Block Diagonal CSR matrix (one column per partition) */
73 preAlps_matrix_vshift_distribute(comm, mloc, ncounts, b_nparts, v, xb, &jb, &b);
74 /* Set the number of columns for each block column of B*/
75 b_ncolcounts = (int *) malloc(b_nparts*sizeof(int));
76 for(i=0;i<b_nparts;i++) b_ncolcounts[i] = 1;
77

78 /* Create a sparse block struct of A(nbprocs x nbprocs) */
79 A_size = nbprocs*nbprocs;
80 A = (int *) malloc(A_size*sizeof(int));
81 preAlps_matrix_createBlockStruct(comm, MATRIX_CSR, mloc, nloc, xa, ja, nbprocs,

ncounts, A);
82 /* Locally convert B from CSR to CSC */
83 preAlps_matrix_convert_csr_to_csc(mloc, rloc, &xb, jb, b);
84

85 /* Compute the matrix-matrix product */
86 ds = preAlps_spMSV(comm, mloc, nloc, rloc, xa, ja, a, xb, jb, b, nparts, ncounts,
87 b_nparts, b_ncolcounts, A, &xc, &jc, &c, spmsv_options);
88

89 /* Free memory */
90 free(part); free(ncounts); free(A);
91 free(xa);free(ja);free(a);
92 free(xb);free(jb);free(b);
93 free(xc);free(jc);free(c);
94 free(v); free(b_ncolcounts);
95 MPI_Finalize();
96 }

http://www.nlafet.eu/ 14/40

http://www.nlafet.eu/

NLAFET D4.1: Computational Kernels

5 Sparse tournament pivoting factorization
In this section we present a collection of algorithms for computing a low-rank approxima-
tion of a large sparse matrix. We use sparse QR based factorizations which are effective
in revealing the singular values in terms of both accuracy and speed. These factorizations
use tournament pivoting which is communication optimal [14].

Experiments on matrices that arise from scientific computing, data analysis, statistics
and engineering show that our functions provide a good low rank approximation for
sparse matrices and are less expensive than the rank revealing QR factorization in terms
of computational and memory usage costs, while also minimizing the communication cost.

We present two functions to factorize a large sparse matrix. A local (inside a processor)
and global (among all processors) tournament pivoting scheme is used to perform a sparse
QR factorization, from which a sparse CUR factorization is derived, preserving sparsity
and interpretability.

In addition, when tournament pivoting is performed on a matrix, it computes a good
and fast approximation of its singular values, being scalable (tested for square matrices
of size up to 3.5 million and up to 512 processors) and communication avoiding.

5.1 Column tournament pivoting
Given a matrix A ∈ Rm×n, the classical QR factorization with column pivoting (QRCP)
selects a column of maximum norm at each step of the factorization. This requires a
reduction operation among processors which costs O(logP) messages. QRCP exchanges
O(k logP) messages for computing a rank-k approximation, and if the factorization pro-
ceeds until the end, it exchanges O(n logP) messages.

When A is dense and the memory per processor is O(n2/P), a lower bound on the
number of messages for computing a QR factorization is Ω(

√
P), where P is the number of

processors [2]. Hence QRCP is not optimal in terms of the number of messages exchanged.
A communication avoiding rank revealing factorization, referred to as CARRQR, was

introduced in [14]. This factorization is communication optimal modulo polylogarithmic
factors, and uses tournament pivoting to select k linear independent columns at each step
of the algorithm. CARRQR uses a reduction tree to perform tournament pivoting, in
each tree node two sets of k columns are combined and a standard QR factorization with
column pivoting is performed to obtain a permutation of these 2k columns. From the
permuted set, the first k columns are the ones selected to be evaluated in the next node
of the tree.

After the distribution of the global matrix among all processors, each processor has a
local matrix Alocal and it calls the function preAlps_tournamentPivoting which selects
k linear independent columns using tournament pivoting.

– Inputs: Alocal (local matrix, read into the vectors xa,ja and a, as presented in
Section 3.4), matrix dimensions (m,n, nnz), rank of approximation k.

– Flags: printSVal (to print the singular values) and ordering (to activate METIS).

– Outputs: Jc (vector of selected columns indexes), Sval (vector of singular values).

http://www.nlafet.eu/ 15/40

http://www.nlafet.eu/

NLAFET D4.1: Computational Kernels

Ai0 Ai1 Ai2 Ai3

Ak
i

Pi

Figure 4: Flat tree inside a local processor

1 ...
2 /* Tournament Pivoting*/
3 int info;
4 MPI_Comm comm;
5 int m, n, nnz, *xa, *ia;
6 double *a;
7 int printSVal = 1;
8 int ordering = 1; // Metis ordering activated
9 long *Jc,*Sval;

10 Jc = malloc(sizeof(long)*k); /* Indexes of selected columns */
11 Sval = malloc(sizeof(long)*k); /* k first singular values */
12

13 info = preAlps_tournamentPivoting(comm,xa,ia,a,m,n,nnz,col_offset,k,Jc,
14 &Sval,printSVal,ordering);
15 ...

To illustrate how this function works, let us consider P = 4 processors, we perform a
local and a global reduction operation using a flat and binary tree respectively.

On each node of the reduction tree, a sparse QR factorization is performed on a set
of 2k columns using the package Suitesparse from Tim Davis [4], next a dense QR
factorization with column pivoting is performed on the small upper triangular matrix R
using the function dgeqp3 from either LAPACK or MKL to obtain a permutation of the set
that gives the final k columns.

For i ∈ {1, 2, 3}, let Ai = [Ai0 Ai1 Ai2 Ai3] be the local matrix on processor Pi,
assumed to be formed by 4 panels of k columns each. The local reduction selects a set of
k columns Ak

i , as it is presented in Figure 4.

http://www.nlafet.eu/ 16/40

http://www.nlafet.eu/

NLAFET D4.1: Computational Kernels

Ak
0 Ak

1 Ak
2 Ak

3

P0 P1 P2 P3

Ak

Figure 5: Binary tree among all processors

The global reduction is performed among all processors using a binary tree to select
the final set of k columns Ak, the process is showed in Figure 5.

The function preAlps_tournamentPivoting gives as output a size n permutation
vector Jc such that

Ak = A(:, Jc)

(we use MATLAB notation in this report).

5.2 QR factorization
Let us consider an m × n matrix A and set r = min(m,n). The column pivoting QR
factorization (QRCP) of A takes the form

A
(m×n)

P
(n×k)

= Q S
(m×k) (m×k)

, (5.1)

where P is a permutation matrix, Q is an orthonormal matrix, and S is upper triangular
matrix (commonly the upper triangular matrix is written as R but we use S to avoid
confusion with the factors in the CUR factorization).

QRCP computes the factorization via Householder transformations [15] using rank-1
updates to the matrix. QRCP can be halted at step k to produce a rank-k approximation
Aapprox to the matrix A. To illustrate this, after k steps of the factorization the matrices
can be split as

Q =
k r − k

[]m Q1 Q2 and S =
k n− k[]

k S11 S12
r − k 0 S22

.

http://www.nlafet.eu/ 17/40

http://www.nlafet.eu/

NLAFET D4.1: Computational Kernels

Equation (5.1) can be written as

A =
[
Q1 Q2

] [S11 S12
0 S22

]
P T = Q1

[
S11 S12

]
P T︸ ︷︷ ︸

=:Aapprox

+Q2
[
0 S22

]
P T︸ ︷︷ ︸

"remainder"

. (5.2)

A BLAS-3 version of QRCP algorithm can be obtained using the routine dgeqp3 [1],
or its parallel version given in [4]. However, a rank k pivoted sparse factorization as (5.2),
is not provided as a built in function in existing packages.

In contrast to the scheme of QRCP that obtains the factorization (5.2) in k steps, we
obtain it directly in 1 step using the tournament pivoting scheme introduced previously.
The function preAlps_tournamentPivotingQR performs this factorization, we present
the details below.

Using notation from Subsection (5.1), we can identify the factors in (5.2):

• The global permutation vector J can be split into the selected columns and the
remaining columns,

J
(1×n)

= [Jc
1×k

Jrem
1×(n−k)

],

so that Ak = A(:, Jc), Arem = A(:, Jrem) and P = I(:, J), where I is the n×n identity
matrix.

• Q1 and S11 are the factors of the QR factorization of Ak,

Ak = Q1S11.

• And [
S12
S22

]
=
[
Q1 Q2

]T
Arem.

From (5.2), we compute the approximation error

‖A− Aapprox‖ = ‖Q2[0 S22]P T‖ = ‖[0 S22]‖ = ‖S22‖. (5.3)

Computing Aapprox is typically much faster than computing the truncated SVD. The
results obtained in [14] and [19] shows that this factorization produces a very good approx-
imation of the singular values, and the error decreases while incrementing the rank k of the
approximation. However for certain extremely rare matrices, substantial sub-optimality
can result [23].

The function preAlps_tournamentPivotingQR performs the previous factorization in
parallel trying to maintain a good load balancing among processors with a small commu-
nication cost. Next, we present a call of preAlps_tournamentPivotingQR from a single
processor.

– Inputs: Alocal (local matrix, read into the vectors xa,ja and a, as presented in
Section 3.4), matrix dimensions (m,n, nnz), rank of approximation k.

– Flags: printSVal (to print the singular values), checkFact (to print the factorization
error), printFact (to print the matrices Q and R) and ordering (to activate METIS).

http://www.nlafet.eu/ 18/40

http://www.nlafet.eu/

NLAFET D4.1: Computational Kernels

– Outputs: Jc (vector of selected columns indexes), Sval (vector of singular values).

– As this is a reduction based algorithm, the processor 0 (Master processor) has the
complete Q(m×k) and R(k×n) matrices, and we can find the approximation error

‖Aglobal − Aaaprox‖ = ‖Aglobal −Q ∗R‖.

1 ...
2 /* Tournament Pivoting QR */
3 int info;
4 MPI_Comm comm;
5 int m, n, nnz, *xa, *ia;
6 double *a;
7 int printSVal = 1;
8 int checkFact = 1, printFact = 1;
9 int ordering = 1; // Metis ordering activated

10 long *Jc,*Sval;
11 Jc = malloc(sizeof(long)*k); /* Indexes of selected columns */
12 Sval = malloc(sizeof(long)*k); /* k first singular values */
13

14 info = preAlps_tournamentPivotingQR(comm,xa,ia,a,m,n,nnz,col_offset,k,Jc,&Sval,
15 printSVal,checkFact,printFact,ordering);
16 ...

In the directory preAlps/test/ we provide a prototype code that shows how to per-
form a sparse QR factorization using tournament pivoting.

5.3 CUR factorization
The library preAlps includes a sparse CUR factorization, which is based on a QR trun-
cated factorization, it is performed by the function preAlps_tournamentPivotingCUR.
The motivation for developing this function is to provide a structure preserving factoriza-
tion which is useful in important modern applications arising nowadays, such as genetic,
medical imaging, and internet data.

A sparse CUR factorization helps to solve classical problems that arise when using
QR, SVD or Eigen-Analysis, for instance:

• sparsity is destroyed by orthogonalization,

• storage requirements are small for CUR factorizations,

• interpretability is very important in diverse applications, for instance in genetics is
more valuable to have a list of representative set of genes than a linear combination
of them (which does not have a practical meaning).

The implemented CUR factorization is a continuation of the factorization (5.2), in
which we have

Aapprox = Q1
[
S11 S12

]
P T . (5.4)

http://www.nlafet.eu/ 19/40

http://www.nlafet.eu/

NLAFET D4.1: Computational Kernels

As we already know the factors of the S matrix , we rewrite the previous factorization
as

Aapprox = Q1S11
[
Ik T

]
P T , (5.5)

where T is the k × (n− k) matrix resulting from solving the linear system

S11T = S12. (5.6)
We denote

V = P

[
Ik

T

]
. (5.7)

1. preAlps_tournamentPivotingCUR returns two length k vectors Jc and Jr, which
are the indexes of the selected columns and rows respectively.

2. Jc is obtained from tournament pivoting of the matrix A, it is the same Jc vector
from the previous Subsection, so that we obtain them×k matrix C := Ak = A(:, Jc).

3. Jr is obtained with the same idea as Jc, performing a QR factorization of CT , which
returns a permutation vector Pr of size 1×m, take Jr = Pr(1 : k). Next, we obtain
the k × n matrix R := A(Jr, :).

4. Replacing (5.7) in (5.5) we get

Aapprox = CV T . (5.8)

Factorization (5.8) is know as the one-sided interpolative decomposition (ID), it is
called interpolative since the columns of Aapprox are obtained from an interpolation
of the columns of C being V T the matrix of interpolation weights.

5. Finally, the matrix U comes from solving the linear system

UR = V. (5.9)

6. In order to solve the sparse linear systems (5.9) and (5.6) we use the solver function
SuiteSparseQR_C_backslash_sparse.

We use the previous QR-based CUR factorization, since it is in general more accurate
than randomized algorithms [29], and its implementation in parallel is efficient maintaining
a good load balancing between processors.

The function preAlps_tournamentPivotingCUR performs the previous factorization
efficiently. Next, we present a call of preAlps_tournamentPivotingQR from a single
processor.

– Inputs: Alocal (local matrix, read into the vectors xa,ja and a, as presented in
Section 3.4), matrix dimensions (m,n, nnz), rank of approximation k.

– Flags: printSVal (to print the singular values), checkFact (to print the factorization
error), printFact (to print the vectors Jc and Jr and the matrix U) and ordering
(to activate METIS).

http://www.nlafet.eu/ 20/40

http://www.nlafet.eu/

NLAFET D4.1: Computational Kernels

– Outputs: Jc (vector of selected columns indexes) , Jr (vector of selected rows in-
dexes), Sval (vector of singular values).

– At the end of computations, the master processor has the matrices C = Aglobal(:, Jc),
U(k × k) and R = Aglobal(Jr, :) and we compute the approximation error

‖Aglobal − Aaaprox‖ = ‖Aglobal − CUR‖.

1 ...
2 /* Tournament Pivoting CUR */
3 int info;
4 MPI_Comm comm;
5 int m, n, nnz, *xa, *ia;
6 double *a;
7 int printSVal = 1;
8 int checkFact = 1, printFact = 1;
9 int ordering = 1; // Metis ordering activated

10 long *Jc,*Jr,*Sval;
11 Jc = malloc(sizeof(long)*k); /* Indexes of selected columns */
12 Jr = malloc(sizeof(long)*k); /* Indexes of selected rows */
13 Sval = malloc(sizeof(long)*k); /* k first singular values */
14

15 info = preAlps_tournamentPivotingCUR(comm,xa,ia,a,m,n,nnz,col_offset,k,Jr,Jc,&Sval,
16 printSVal,checkFact,printFact,ordering);
17 ...

5.4 Example program
The following example presents how to use our functions to perform a CUR factorization
of a sparse matrix read by stdin.

1 /*
2 ==
3 Description : Performs a CUR factorization using tournament pivoting on a sparse
4 matrix.
5 ==
6 */
7 #include "preAlps_matrix.h"
8 #include "tournamentPivoting.h"
9 #include "spTP_utils.h"

10

11 int main(int argc, char **argv){
12

13 /* Global variables */
14 double *Sval; // vector of singular values.
15 int k; // rank of approximation.
16 int rank,size;
17 MPI_Init(&argc,&argv);
18 MPI_Comm_rank(MPI_COMM_WORLD,&rank);
19 MPI_Comm_size(MPI_COMM_WORLD,&size);
20 MPI_Comm comm;
21 MPI_Comm_dup(MPI_COMM_WORLD, &comm);

http://www.nlafet.eu/ 21/40

http://www.nlafet.eu/

NLAFET D4.1: Computational Kernels

22

23 /* Initialize variables (can be donde by stdin too) */
24 int ordering = 0; // if set to 1 -> Uses Metis ordering.
25 int printSVal = 0; // if set to 1 -> Prints the singular values into a file.
26 int checkFact = 0; // if set to 1 -> Returns factorization error (infinty norm).
27 int printFact = 0; // if set to 1 -> Prints the matrix U and the vectors Jr, Jc.
28 char *matrixName = NULL;
29

30 /* Reading parameters from stdin */
31 preAlps_TP_parameters_display(comm,&matrixName,&k,ordering,&printSVal,
32 &checkFact,&printFact,argc,argv);
33

34 /* Reading matrix in Master processor */
35 int *xa = NULL, *ia = NULL;
36 double *a = NULL;
37 int m=0, n=0, nnz=0;
38

39 if(rank ==0){
40 preAlps_matrix_readmm_csc(matrixName, &m, &n, &nnz, &xa, &ia, &a);
41 }
42

43 free(matrixName);
44

45 /* Distribute the matrix among all processors */
46 long col_offset=0;
47 preAlps_spTP_distribution(comm,&m, &n, &nnz, &xa, &ia, &a, &col_offset, checkFact);
48

49 /* Alocate memory for the vectors Jc, Jr and the singular values */
50 ASSERT(k>0);
51 long *Jc,*Jr;
52 Jr = malloc(sizeof(long)*k);
53 if(rank == 0) {
54 Jc = malloc(sizeof(long)*k);
55 if(printSVal) Sval = malloc(sizeof(long)*k);
56 }
57

58 /* Call tournamentPivotingCUR, gets Jc, Jr and the singular values (if required). */
59 double t_begin, t_tp;
60 t_begin=MPI_Wtime();
61 preAlps_tournamentPivotingCUR(comm,xa,ia,a,m,n,nnz,col_offset,k,Jr,Jc,&Sval,
62 printSVal,checkFact,printFact,ordering);
63 t_tp = MPI_Wtime()-t_begin;
64

65

66 /* Print the results */
67 if(rank==0) {
68 printf("Time for tournamentPivotingCUR = %f \n", t_tp);
69 free(Jc);
70 if(printSVal) free(sval);
71 }
72 free(Jr); free(xa); free(ia); free(a);
73

74 MPI_Finalize();
75 return 0;
76 }

http://www.nlafet.eu/ 22/40

http://www.nlafet.eu/

NLAFET D4.1: Computational Kernels

6 Experiments

6.1 Environment
In this section we evaluate the performance of the routines spMSV, tournamentPivot-
ingQR, and tournamentPivotingCUR on two machines running on Linux. The first ma-
chine has 32 nodes, each node is equipped with a socket having 10 cores based on "Intel
Xeon IvyBridge E5-4650 v2" processor, and each core has a frequency of 2.40GHz. The
second machine has 28 nodes, each node is equipped with a socket having 24 cores based
on "Intel Xeon E5-2670", and each core has a frequency of 2.6GHz. Since the computing
machine is shared with other users, we were able to run some of our experiments up to 200
cores on the first machine and 512 cores on the second machine. We assign one MPI task
per core. We determine the speedup of the sparse matrix-matrix product with respect to
MKL 12.0 vendor library [30]. As MKL supports only shared memory, we tested two rou-
tines of MKL on a single node. The first routine, mkl_dcsrcsr, performs the product of
two sparse matrices stored using CSR format. The second routine, mkl_dcsrmm, performs
the product of two matrices where the first is sparse and stored using CSR format and the
second is dense. In the second case, the matrices formed by a set of vectors in our test set
are converted to dense matrices before calling the mkl_dcsrmm routine. We consider both
routines as the best single-node sparse matrix-matrix product. For simplicity reasons,
we refer to mkl_dcsrcsr and mkl_dcsrmm as MKL(sparse x sparse) and MKL(sparse x
dense) respectively.

6.2 Sparse matrix matrix product
6.2.1 Description of test matrices

In order to evaluate the performance of spMSV, we have used a set of matrices from the
University of Florida sparse matrix collection [13] arising from various real applications.
We describe these matrices in Table 1. For each test, we use A as the sparse matrix, and
B as the matrix formed by a set of vectors.

6.2.2 Performance of spMSV

Figure 6 shows the speedup of spMSV with respect to MKL for 32 and 128 processors
when the number of block columns of B is 32 (T = 32). For 32 processors, spMSV is on
average 37 times faster than MKL(sparse x dense) with a maximum speedup of 102, and
on average 18 times faster than MKL(sparse x sparse) with a maximum speedup of 27.
For 128 processors, spMSV is on average 28 times faster than MKL(sparse x dense) with
a maximum speedup of 90, and on average 12 times faster than MKL(sparse x sparse)
with a maximum speedup of 25. We observe that maximum speedup is always obtained
for the matrix crankseg_1, which is much denser than the other test matrices. We see a
decrease in the speedup for 128 processors versus 32 processors due to the fact that for
large number of processors, the communication cost tends to dominate the computation.
When the problem size is fixed and the number of processors increases, the number of non-
zero elements per processor decreases considerably, and finally the computation represents
less than 10% of the total execution time. This can be better illustrated in Figure 7 which

http://www.nlafet.eu/ 23/40

http://www.nlafet.eu/

NLAFET D4.1: Computational Kernels

Name Matrix size nnz Description
bcsstk37 25,503 1,140,977 Stiffness Matrix, Track Ball
msc23052 23,052 1,142,686 Symmetric test matrix from MSC/Nastran
raefsky4 19,779 1,316,789 Buckling problem for container model
turon_m 189,924 1,690,876 System modelling the underground
cfd1 70,656 1,825,580 CFD, symmetric pressure matrix
bcsstk39 46,772 2,060,662 Stiffness Matrix, Shuttle Solid Rocket Booster
ct20stif 52,329 2,600,295 CT20 Engine Block
shipsec8 114,919 3,303,553 Ship section/detail from production run
Dubcova3 146,689 3,636,643 Univ. Texas at El Paso, from a PDE solver
cant 62,451 4,007,383 FEM/Cantilever
s3dkq4m2 90,449 4,427,725 FEM, cylindrical shell
Si34H36 97,569 5,156,379 Real-space pseudopotential method
consph 83,334 6,010,480 FEM/Spheres: FEM concentric spheres
thermal2 1,228,045 8,580,313 Unstructured FEM, steady state thermal problem
crankseg_1 52,804 10,614,210 OUTPUT4-Matrix
kkt_power 2,063,494 12,771,361 Optimal power flow, nonlinear optimization
Queen_4147 4,147,110 316,548,962 3D structural problem
nlpkkt240 27,993,600 760,648,352 3D PDE-constrained optimization problem

Table 1: Description of matrices sorted by number of nonzeros

shows the time for each operation of spMSV for an arbitrary matrix. We observe that for
2 processors, the cost of the computation represents about 70% of the total time, while
for 64 processors, it represents only 15% of total time. Similarly, the communication
cost for 2 processors represents only 12% of the computations, while for 64 processors, it
represents 60% of the total time.

Figure 6: Speedup of SPMSV for 32 and 128 processors with respect to MKL(sparse x dense)
and MKL(sparse x sparse).

Figure 8 shows the scalability of spMSV when increasing the number of processors to
128. For the matrices with less than 12 millions non-zeros as represented at the left of
the figure, spMSV is scalable up to 64 processors. While for larger matrices with over

http://www.nlafet.eu/ 24/40

http://www.nlafet.eu/

NLAFET D4.1: Computational Kernels

Figure 7: Time of each operation of spMSV for the matrix Thermal2 when the number
of processor varies.

300 millions non-zeros as represented at the right of the figure, it is scalable up to 128
processors.

Figure 8: Speedup of spMSV for T=32. At the left, the test matrices have less than
12 millions of non-zeros. At the right, the test matrices have more than 300 millions of
non-zeros.

http://www.nlafet.eu/ 25/40

http://www.nlafet.eu/

NLAFET D4.1: Computational Kernels

6.3 Low rank approximation
6.3.1 Approximation results

Singular value approximation: We present the approximation of the whole spectrum
of 2 challenging matrices of size n×n, which are often among the matrices used for testing
rank revealing algorithms, see e.g. [14] and [17].

Table 2: Test matrices generated in MATLAB

No. Matrix Description
1 EXPONENTIAL Exponential Distribution, σ1 = 1, σi = αi−1 (i = 2, . . . , n) [3]
2 FOXGOOD Severely ill-posed test problem of the 1st kind Fredholm

integral equation used by Fox and Goodwin [21]

We construct these matrices setting the size n = 256. Setting k = 16, we apply recur-
sively the sequential MATLAB implementation of our function preAlps_tournamentPivotingQR
to obtain all the singular values, in the context of a rank revealing QR factorization.

Figure 9 shows approximations of the singular values using two rank revealing fac-
torizations with pivoting, QRTP uses tournament pivoting, while QRCP uses the classic
column pivoting. The singular values obtained by the svd routine from MATLAB are also
displayed. The results from Figure 9 show that the singular values are well approximated.

Singular values of Exponential matrix Singular values of Foxgood matrix

Figure 9: Singular values approximation using QR with column pivoting and QR with
tournament pivoting.

Image approximation and compression: Using a MATLAB implementation of the
algorithms presented in section 5, we analyze the approximation and compression of each

http://www.nlafet.eu/ 26/40

http://www.nlafet.eu/

NLAFET D4.1: Computational Kernels

of them. For that, we define the compression ratio Cr as the amount of memory space
required by Aapprox with respect to the memory space required by A. For instance, for
the CUR and QR factorizations of dense matrices, the compression ratios are

CCUR
r = k × (m+ n+ k)

m× n
, CQR

r = k × (m+ n)
m× n

.

Original image QRNP, Cr = 0.17, k = 100

QRTP, Cr = 0.17, k = 100 CUR, Cr = 0.18, k = 100

Figure 10: Approximation of image of size 1345× 1024 using different algorithms, image
source: https://en.wikipedia.org/wiki/Albert_Einstein#/media

Figure 10 shows graphically the approximation of a low rank approximation using
different methods (QRNP: QR without pivoting, QRTP: QR with tournament pivoting).
We can see that using 17% (for QRTP) and 18% (for CUR) of the memory required by
the full matrix, we obtain a good approximation of the image.

http://www.nlafet.eu/ 27/40

https://en.wikipedia.org/wiki/Albert_Einstein#/media
http://www.nlafet.eu/

NLAFET D4.1: Computational Kernels

The result is due to the fact that the singular values of the matrix representing the
image decrease rapidly. Indeed, the first singular value is larger than 400 and the singular
values beyond the hundredth are smaller than 2. Also, note that the images obtained
from the approximations based on QR and CUR show similar results. But the error
from CUR factorization is typically larger than the error from QR factorization, since the
computation of the matrix U incurs an additional error.

6.3.2 Scalability results

We test the scalability of our algorithms using a a set of square sparse matrices of size n×n
coming from the University of Florida sparse matrix collection [13]. We divide the tests
between those for small matrices (with n ≤ 100, 000) and those for larger matrices (with
n ≥ 500, 000) . The results show that the algorithms are scalable up to 512 processors for
the set of matrices used in our tests.

Table 3: Scalability for small matrices, time in seconds to select k = 16 columns, with
LAPACK and without METIS.

Matrix Dimensions Number of MPI processes
nrows ncols nnz 4 8 16 32 64

photogrametry 1,388 390 11,816 0.2 0.1 0.1
dictionary28 52,652 52,652 178,076 118.1 57.0 26.4 13.0 6.7
water_tank 60,740 60,740 203,5281 21.7 11.6 6.2 3.2 1.7
delaunay_n16 65,536 65,536 393,150 21.6 11.8 6.6 3.4 1.8
gas_sensor 66,917 66,917 170,3365 28.4 15.2 8.2 4.3 2.2
oilpan 73,752 73,752 359,7188 118.9 65.9 40.1 27.7 11.2
shallow_water2 81,920 81,920 327,680 33.5 18.7 10.8 5.6 2.9
onera_dual 85,567 85,567 419,201 36.1 20.4 12.1 6.2 3.3

http://www.nlafet.eu/ 28/40

http://www.nlafet.eu/

NLAFET D4.1: Computational Kernels

Figure 11: Scalability for small matrices.

Figure 12: Parallel efficiency for small matrices.

For the larger matrices, we have done many tests using different combinations of the
parameters given to our functions. We swap LAPACK for MKL during the calls for computing
a QR factorization of a small dense matrix in our reduction tree. We also swap between
the choice of a natural ordering or METIS ordering. Below we present the results using

http://www.nlafet.eu/ 29/40

http://www.nlafet.eu/

NLAFET D4.1: Computational Kernels

Table 4: Scalability up to 200 processors, time in seconds to select k = 256 columns, with
MKL and METIS.

Matrix Dimensions Number of MPI processes
nrows ncols nnz 32 64 128 200

parabolic_fem 525,825 525,825 3,674,625 49.3 40.0 31.5 25.1
mac_econ_fwd500 206,500 206,500 1,273,389 90.3 39.4 22.6 19.0

atmosmodd 1,270,432 1,270,432 8,814,880 374.1 210.9 128.8 99.7
circuit5M_dc 3,523,317 3,523,317 19,194,193 874.2 441.3 239.6 160.2

the combination that has produced the best results for each of the two machines.

Figure 13: Scalability for large matrices up to 200 cores.

http://www.nlafet.eu/ 30/40

http://www.nlafet.eu/

NLAFET D4.1: Computational Kernels

Table 5: Scalability up to 512 processors, time in seconds to select k = 256 columns, with
LAPACK and METIS.

Matrix Dimensions Number of MPI processes
nrows ncols nnz 32 64 128 256 512

parabolic_fem 525,825 525,825 3,674,625 57.66 44.0 25.7 12.4 6.9
mac_econ_fwd500 206,500 206,500 1,273,389 94.0 55.1 28.2 13.1 7.2

atmosmodd 1,270,432 1,270,432 8,814,880 370.3 203.3 150.1 86.0 44.0
circuit5M_dc 3,523,317 3,523,317 19,194,193 916.0 465.9 245.4 143.1 80.7

Figure 14: Scalability for large matrices up to 512 cores.

7 Routines
In this section, we present the utility routines implemented in PreAlps library.

7.1 Sequential Utility routines
/* Convert a matrix from csc to csr*/
int preAlps_matrix_convert_csc_to_csr(int m, int n, int **xa, int *asub, double *a);

/* Convert a matrix from csr to csc*/
int preAlps_matrix_convert_csr_to_csc(int m, int n,

int **xa, int *asub, double *a);

/* Convert a matrix from csr to dense */
int preAlps_matrix_convert_csr_to_dense(int m, int n,

http://www.nlafet.eu/ 31/40

http://www.nlafet.eu/

NLAFET D4.1: Computational Kernels

int *xa, int *asub, double *a,
preAlps_matrix_layout_t mlayout, double *a1, int lda1);

/* Copy a matrix A into A1 */
void preAlps_matrix_copy(int m,

int *xa, int *asub, double *a,
int *xa1, int *asub1, double *a1);

/* Print a dense matrix*/
void preAlps_matrix_dense_print(preAlps_matrix_layout_t mlayout, int m, int n,

double *a, int lda, char *s);

/*
* Partition a matrix using an hypergraph partitioning tools
* part_loc:
* output: part_loc[i]=k means row i belongs to subdomain k
*/

int preAlps_matrix_hpartition_sequential(int m, int n, int *xa, int *asub,
int nparts, int *part);

/*
* Partition a matrix using Metis
* part_loc:
* output: part_loc[i]=k means row i belongs to subdomain k
*/

int preAlps_matrix_partition_sequential(int m, int *xa, int *asub,
int nparts, int *part);

/*
* Compute A1 = P’AQ where P and Q are permutations of 0..m-1 and 0..n-1.
* if pinv or q is NULL it is considered as the identity
*/

void preAlps_matrix_permute (int n, int *xa, int *asub, double *a,
int *pinv, int *q,
int *xa1, int *asub1,double *a1);

/* Print a CSR matrix */
void preAlps_matrix_print(preAlps_matrix_storage_t mtype, int m,

int *xa, int *asub, double *a, char *s);

/* Read a matrix market data file and stores the matrix using CSR format */
int preAlps_matrix_readmm_to_csr(char *filename, int *m, int *n, int *nnz,

int **xa, int **asub, double **a);

/*
* Perform C = A(i_begin:i_end, :) * B, where the matrix submatrix

http://www.nlafet.eu/ 32/40

http://www.nlafet.eu/

NLAFET D4.1: Computational Kernels

* A(i_begin:i_end,:) is sparse,
* and the matrix B is dense.
* The result is
* ptrRowBegin:
* input: ptrRowBegin[i] = j means the first non zero element of row i is in column j
* ptrRowEnd:
* input: ptrRowEnd[i] = j means the last non zero element of row i is in column j
*/

int preAlps_matrix_subMatrix_CSRDense_Product(int m,
int *ptrRowBegin, int *ptrRowEnd,
int a_colOffset,
int *asub, double *a,
double *b, int ldb, int b_nbcol,
double *c, int ldc);

/* Create a full symmetric matrix from a lower triangular matrix */
int preAlps_matrix_symmetrize(int m, int n, int nnz,

int *xa, int *asub, double *a, int *nnz2,
int **xa2, int **asub2, double **a2);

7.2 Parallel Utility routines
/*
* Assemble a previous distributed matrix into one CSR matrix,
* All the processors calling this routines send their part
* of the matrix to the master processor.
*/

int preAlps_matrix_assemble(MPI_Comm comm, int mloc,
int *xa, int *asub, double *a, int *ncounts,
int **xa1, int **asub1, double **a1);

/*
* Create a sparse block structure of a CSR matrix.
* The matrix is initially 1D row block distributed.
*/

int preAlps_matrix_createBlockStruct(MPI_Comm comm, preAlps_matrix_storage_t mtype,
int mloc, int nloc,
int *xa, int *asub, int nparts, int *ncounts,
int *ABlockStruct);

/*
* Distribute a CSR matrix to all the processors in the communicator
* using 1D block rows distribution.
*/

int preAlps_matrix_distribute(MPI_Comm comm, int m,
int **xa, int **asub, double **a, int *mloc);

http://www.nlafet.eu/ 33/40

http://www.nlafet.eu/

NLAFET D4.1: Computational Kernels

/*
* 1D block row redistribution of the matrix to each proc guided by an array ’part’
* which indicates to which subdomain each row belongs to.
* part_loc: part_loc[i]=k means row i belongs to subdomain k.

*/
int preAlps_matrix_kpart_redistribute(MPI_Comm comm, int m, int n,

int **xa, int **asub, double **a,
int *mloc,
int *part);

/*
* Partition a matrix in parallel using parMetis
* part_loc:
* output: part_loc[i]=k means rows i belongs to subdomain k
*/

int preAlps_matrix_partition(MPI_Comm comm, int *vtdist,
int *xa, int *asub, int nbparts, int *part_loc);

/* Every processor prints its local matrix*/
void preAlps_matrix_print_global(MPI_Comm comm, preAlps_matrix_storage_t mtype, int m,

int *xa, int *asub, double *a, char *s);

/*
* 1D block row distribution of the matrix to all the processors in the communicator
* using ncounts to indicate the number of rows per processor.
*/

int preAlps_matrix_scatterv(MPI_Comm comm, int mloc,
int **xa, int **asub, double **a, int *ncounts);

7.3 spMSV routine
int preAlps_spMSV(MPI_Comm comm,

int mloc, int nloc, int rloc,
int *xa, int *asub, double *a,
int *xb, int *bsub, double *b,
int a_nparts, int *a_nrowparts,
int b_nparts, int *b_ncolparts,
int *ABlockStruct,
int **xc, int **csub, double **c,
int *options);

/*
* Purpose
* =======
*

http://www.nlafet.eu/ 34/40

http://www.nlafet.eu/

NLAFET D4.1: Computational Kernels

* Perform a matrix matrix product C = A*B,
* where A is a CSR matrix, B is a CSR matrix formed by a set of vectors,
* and C is a CSR matrix.
* The matrix is initially 1D row block distributed.
*
* Arguments
* =========
*
* mloc:
* input: local number of rows of A owned by the processor calling this routine
*
* nloc:
* input: local number of columns of A
*
* rloc:
* input: local number of columns of B
*
* xa,asub,a:
* input: matrix A of size (mloc x nloc) stored using CSR.
*
* xb,bsub,b:
* input: matrix B of size (nloc x rloc) stored using CSC.
* If B is stored using CSR , then see options below;
*
* a_nparts:
* input: the number of block rows of matrix A.
* The global block structure of A has size (a_nparts x a_nparts).
*
* a_nrowparts:
* input: Array of size a_nparts to indicate the number of rows in
* each block column of A.
*
* b_nparts:
* input: number of block columns for matrix B
* The global sparse block struct size of B is (a_nparts x b_nparts).
*
* b_ncolparts:
* input: Array of size b_nparts to indicate the number of columns
* in Block column of B.
*
* ABlockStruct
* input: array of size (a_nparts x a_nparts) to indicate
* the sparse block structure of A.
* ABlockStruct(i,j) = 0 if the block does not contains any element.
* This array must be precomputed by the user before calling this routine.
*
* xc,csub,c:
* output: matrix C stored as CSC.

http://www.nlafet.eu/ 35/40

http://www.nlafet.eu/

NLAFET D4.1: Computational Kernels

* If C is NULL, it will be created.
* If the size of C is smaller than the expected size of A*B,
* it will be reallocated with the enlarged size.
* Otherwise C will be reused.
* The sparse block struct size of C is (a_nparts x b_nparts)
*
* options: array of size 3 to control this routine. (Coming soon)
* input:
* options[0] = 1 if the input matrix B is stored as CSR instead of CSC.
* An internal buffer will be required.
* options[1] = 1 if the result matrix must be stored as CSR instead of CSC.
* options[2] = 1 switch off the possibility to switch to dense matrix.
*
* Return
* ======
* 0: the resulting matrix C is sparse, use (xc, asubc, c) to manipulate it.
* 1: the resulting matrix C is converted to dense, use only (c) to manipulate it.
* < 0: an error occured during the execution.
*/

7.4 Tournament pivoting routines
int preAlps_tournamentPivoting(MPI_Comm comm, int *xa, int *ia, double *a,

int m, int n, int nnz, long col_offset,
int k, long *Jc, double **Sval,
int printSVal, int ordering);

/*
* Purpose
* =======
* Performs tournament pivoting to choose k pivot columns of a sparse
* matrix.
* Arguments
* =========
* Inputs:
* xa,ia,a: vectors that define the CSC matrix (column pointers, row
* indexes and matrix values respectively),
* m,n,nnz: dimensions of the matrix,
* k: rank of the approximation,
* col_offset: offset of local column indexes with respect to global
* indexes,
* Flags: printSVal (to print the singular values) and ordering
* (to activate METIS).
* Outputs:
* Jc: vector of indexes of selected columns,
* Sval: vector containing the approximated k first singular values.

http://www.nlafet.eu/ 36/40

http://www.nlafet.eu/

NLAFET D4.1: Computational Kernels

*/

int preAlps_tournamentPivotingQR(MPI_Comm comm, int *xa, int *ia, double *a,
int m, int n, int nnz, long col_offset,
int k, long *Jc, double **Sval,
int printSVal, int checkFact,
int printFact, int ordering);

/*
* Purpose
* =======
* Performs a sparse QR factorization using tournament pivoting.
*
* Arguments
* =========
* Inputs:
* xa,ia,a: vectors that define the CSC matrix (column pointers, row
* indexes and matrix values respectively),
* m,n,nnz: dimensions of the matrix,
* col_offset: offset of local column indexes with respect to global
* indexes,
* k: rank of the approximation,
* Flags: printSVal (to print the singular values), checkFact (to print
* the factorization error), printFact (to print the matrices Q
* and R) and ordering (to activate METIS).
* Outputs:
* Jc: vector of indexes of selected columns,
* Sval: vector containing the approximated k first singular values.
*/

int preAlps_tournamentPivotingCUR(MPI_Comm comm, int *xa, int *ia, double *a,
int m, int n, int nnz, long col_offset,
int k, long *Jr, long *Jc, double **Sval,
int printSVal, int checkFact,
int printFact, int ordering);

/*
* Purpose
* =======
* Performs a sparse CUR factorization using tournament pivoting.
*
* Arguments

http://www.nlafet.eu/ 37/40

http://www.nlafet.eu/

NLAFET D4.1: Computational Kernels

* =========
* Inputs:
* xa,ia,a: vectors that define the CSC matrix (column pointers, row
* indexes and matrix values respectively),
* m,n,nnz: dimensions of the matrix,
* col_offset: offset of local column indexes with respect to global
* indexes,
* k: rank of the approximation,
* Flags: printSVal (to print the singular values), checkFact (to print
* the factorization error), printFact (to print the vectors Jc
* and Jr and the matrix U) and ordering (to activate METIS).
* Outputs:
* Jr: vector of indexes of selected rows,
* Jc: vector of indexes of selected columns,
* Sval: vector containing the approximated k first singular values.
*/

8 Conclusion
We have designed and tested PreAlps library which implements efficient matrix-matrix
product and sparse communication avoiding low rank approximation routines widely used
in iterative solvers. Our experiments show that the results are encouraging for the develop-
ment of our preconditioner and enlarged Krylov subspace solvers which will be integrated
gradually into the library as part of this work. The application of our singular value
approximation using tournament pivoting in image approximation and compression also
show good results compared with the classic singular value decomposition.

9 Acknowledgments
This project is funded from the European Union’s Horizon 2020 research and innovation
programme under the NLAFET grant agreement No 671633.

References
[1] Edward Anderson, Zhaojun Bai, Christian Bischof, Susan Blackford, Jack Don-

garra, Jeremy Du Croz, Anne Greenbaum, Sven Hammarling, A. McKenney, and
D. Sorensen. LAPACK Users’ guide, volume 9. Siam, 1999.

[2] Grey Ballard, James Demmel, Olga Holtz, and Oded Schwartz. Minimizing commu-
nication in numerical linear algebra. SIAM Journal on Matrix Analysis and Appli-
cations, 32(3):866–901, 2011.

[3] Christian H. Bischof. A parallel QR factorization algorithm with controlled local
pivoting. SIAM Journal on Scientific and Statistical Computing, 12(1):36–57, 1991.

http://www.nlafet.eu/ 38/40

http://www.nlafet.eu/

NLAFET D4.1: Computational Kernels

[4] L. Susan Blackford, Jaeyoung Choi, Andy Cleary, Eduardo D’Azevedo, James Dem-
mel, Inderjit Dhillon, Jack Dongarra, Sven Hammarling, Greg Henry, Antoine Pe-
titet, et al. ScaLAPACK users’ guide, volume 4. Siam, 1997.

[5] Ronald F. Boisvert, Roldan Pozo, Karin Remington, Richard F. Barrett, and Jack J.
Dongarra. Matrix Market: a web resource for test matrix collections. In Quality of
Numerical Software, pages 125–137. Springer, 1997.

[6] Ümit Çatalyürek and Cevdet Aykanat. PaToH (partitioning tool for hypergraphs).
In Encyclopedia of Parallel Computing, pages 1479–1487. Springer, 2011.

[7] Umit V. Catalyurek and Cevdet Aykanat. Hypergraph-partitioning-based decompo-
sition for parallel sparse-matrix vector multiplication. IEEE Transactions on Parallel
and Distributed Systems, 10(7):673–693, 1999.

[8] Yanqing Chen, Timothy A. Davis, William W. Hager, and Sivasankaran Rajaman-
ickam. Algorithm 887: CHOLMOD, Supernodal sparse Cholesky factorization and
update/downdate. ACM Transactions on Mathematical Software (TOMS), 35(3):22,
2008.

[9] Anthony T. Chronopoulos and Charles William Gear. s-step iterative methods
for symmetric linear systems. Journal of Computational and Applied Mathematics,
25(2):153–168, 1989.

[10] Anthony T. Chronopoulos and Charles D. Swanson. Parallel iterative s-step methods
for unsymmetric linear systems. Parallel Computing, 22(5):623–641, 1996.

[11] Timothy A. Davis. Algorithm 8xx: SuiteSparseQR, a multifrontal multithreaded
sparse QR factorization package. ACM Trans. Math. Software, 2008.

[12] Timothy A. Davis. Multifrontral multithreaded rank-revealing sparse QR factoriza-
tion. In Dagstuhl Seminar Proceedings. Schloss Dagstuhl-Leibniz-Zentrum für Infor-
matik, 2009.

[13] Timothy A. Davis and Yifan Hu. The University of Florida sparse matrix collection.
ACM Transactions on Mathematical Software (TOMS), 38(1):1, 2011.

[14] James W. Demmel, Laura Grigori, Ming Gu, and Hua Xiang. Communication avoid-
ing rank revealing QR factorization with column pivoting. SIAM Journal on Matrix
Analysis and Applications, 36(1):55–89, 2015.

[15] Gene H. Golub and Charles F. Van Loan. Matrix computations, volume 3. JHU
Press, 2012.

[16] Susan L. Graham, Marc Snir, Cynthia A. Patterson, et al. Getting up to speed: The
future of supercomputing. National Academies Press, Washington, D.C., USA, 2005.

[17] Laura Grigori, Sebastien Cayrols, and James W. Demmel. Low rank approximation of
a sparse matrix based on LU factorization with column and row tournament pivoting.
[Research Report] RR-8910, INRIA. 2016, pp.35. <hal-01313856>.

http://www.nlafet.eu/ 39/40

http://www.nlafet.eu/

NLAFET D4.1: Computational Kernels

[18] Laura Grigori, Sophie Moufawad, and Frederic Nataf. Enlarged Krylov subspace
conjugate gradient methods for reducing communication. SIAM J. Matrix Anal.
Appl., 2016.

[19] Ming Gu and Stanley C. Eisenstat. Efficient algorithms for computing a strong rank-
revealing QR factorization. SIAM Journal on Scientific Computing, 17(4):848–869,
1996.

[20] Martin H. Gutknecht. Block Krylov space methods for linear systems with multiple
right-hand sides: an introduction. 2006.

[21] Per Christian Hansen. Regularization tools version 4.0 for matlab 7.3. Numerical
algorithms, 46(2):189–194, 2007.

[22] Mark Hoemmen. Communication-avoiding Krylov subspace methods. PhD thesis,
University of California, Berkeley, 2010.

[23] William Kahan. Numerical linear algebra. Canadian Math. Bull, 9(6):757–801, 1966.

[24] George Karypis and Vipin Kumar. METIS –unstructured graph partitioning and
sparse matrix ordering system, version 2.0. 1995.

[25] George Karypis, Kirk Schloegel, and Vipin Kumar. Parmetis: Parallel graph parti-
tioning and sparse matrix ordering library. Version 1.0, Dept. of Computer Science,
University of Minnesota, 1997.

[26] Marghoob Mohiyuddin, Mark Hoemmen, James Demmel, and Katherine Yelick. Min-
imizing communication in sparse matrix solvers. In Proceedings of the Conference
on High Performance Computing Networking, Storage and Analysis, page 36. ACM,
2009.

[27] Yousef Saad. Iterative methods for sparse linear systems. Society for Industrial
Mathematics, 2003.

[28] Henk A. Van der Vorst. Iterative Krylov methods for large linear systems, volume 13.
Cambridge University Press, 2003.

[29] Sergey Voronin and Per-Gunnar Martinsson. RSVDPACK: An implementation of
randomized algorithms for computing the singular value, interpolative, and CUR
decompositions of matrices on multi-core and GPU architectures. arXiv preprint
arXiv:1502.05366, 2015.

[30] Endong Wang, Qing Zhang, Bo Shen, Guangyong Zhang, Xiaowei Lu, Qing Wu, and
Yajuan Wang. Intel math kernel library. In High-Performance Computing on the
Intel R© Xeon Phi, pages 167–188. Springer, 2014.

[31] Michael M. Wolf, Erik G. Boman, and Bruce Hendrickson. Optimizing parallel sparse
matrix-vector multiplication by corner partitioning. PARA08, Trondheim, Norway,
2008.

http://www.nlafet.eu/ 40/40

http://www.nlafet.eu/

	Executive Summary
	Introduction
	Using PreAlps library
	Purpose
	Availability of the software
	Installation
	Input data formats

	Sparse Matrix-Matrix product
	spMSV routine
	Implemented routines
	Example program

	Sparse tournament pivoting factorization
	Column tournament pivoting
	QR factorization
	CUR factorization
	Example program

	Experiments
	Environment
	Sparse matrix matrix product
	Description of test matrices
	Performance of spMSV

	Low rank approximation
	Approximation results
	Scalability results

	Routines
	Sequential Utility routines
	Parallel Utility routines
	spMSV routine
	Tournament pivoting routines

	Conclusion
	Acknowledgments

