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Distributed One-Stage Hessenberg-Triangular
Reduction with Wavefront Scheduling∗

Björn Adlerborn, Lars Karlsson, and Bo Kågström

Abstract
A novel parallel formulation of Hessenberg-triangular reduction of a regular matrix pair

on distributed memory computers is presented. The formulation is based on a sequential
cache-blocked algorithm by Kågström, Kressner, E.S. Quintana-Ortí, and G. Quintana-
Ortí (2008). A static scheduling algorithm is proposed that addresses the problem of
underutilized processes caused by two-sided updates of matrix pairs based on sequences
of rotations. Experiments using up to 961 processes demonstrate that the new formulation
is an improvement of the state of the art and also identify factors that limit its scalability.

1 Introduction
For any matrix pair (A, B), where A, B ∈ Rn×n, there exist orthogonal matrices Q, Z ∈ Rn×n,
not necessarily unique, such that QT AZ = H is upper Hessenberg and QT BZ = T is upper
triangular. The resulting pair (H, T ) is said to be in Hessenberg-Triangular (HT) form and the
act of reducing (A, B) to (H, T ) is referred as HT reduction. One application of HT reduction
is as a preprocessing step used in various numerical methods such as the QZ algorithm for
the non-symmetric generalized eigenvalue problem [4, 3, 9, 14, 10].

Moler and Stewart [13] proposed in 1973 an algorithm for HT reduction that is exclu-
sively based on Givens rotations. Kågström, Kressner, E.S. Quintana-Ortí, and G. Quintana-
Ortí [11] proposed in 2008 a cache-blocked variant of Moler and Stewart’s algorithm. They
express most of the arithmetic operations in terms of matrix–matrix multiplications involving
small orthogonal matrices obtained by explicitly accumulating groups of rotations using a
technique proposed by Lang [12]. Both of these algorithms are sequential, but the cache-
blocked algorithm can to a limited extent scale on systems with shared memory by using a
parallel matrix–matrix multiplication routine.

The algorithms above use a one-stage approach in the sense that they reduce the matrix
pair directly to HT form. There is also a two-stage approach that first reduces the matrix
pair to a block HT form followed by a bulge-chasing procedure that completes the reduction
to proper HT form [2, 1, 8]. Two-stage algorithms are arguably more complicated and have
a higher arithmetic cost. A fundamental difference between the one-stage and the two-stage
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approach is the usage of Householder reflections in the two-stage approach. Householder
reflections are used in the first stage to reduce column entries in the matrix A. When these
are applied to the matrix B, they will, repeatedly, destroy the structure by producing fill-
in in the lower triangular part of the matrix B and hence cause extra work. However, the
arithmetic and parallel gain from using long reflections and applying them in a parallel,
blocked manner is greater than the extra work of restoring B to its original triangular form.
At some point, the extra work becomes substantial, so the algorithm shifts to the second
stage, at some heuristically determined breakpoint, to instead use a bulge-chasing procedure
causing less fill-in in B. Householder reflections are also used to reduce a single matrix to
Hessenberg form, used as a preprocessing step in the standard eigenvalue problem, and since
there is no fill-in to be dealt with, Householder reflections are used exclusively, resulting in a
highly efficient reduction where 80% [5, 6] of the operations are performed in level 3 BLAS
matrix-matrix operations.

For the generalized case, recent results show that a sequential cache-blocked one-stage
approach can outperform or at least compete with a two-stage approach [11]. In this paper, we
propose a novel parallel formulation of a cache-blocked one-stage algorithm [11, Algorithm 3.2]
hereafter referred to as KKQQ after its inventors.

The algorithms mentioned above have in common that they first reduce the matrix B to
upper triangular form using a standard QR factorization. Specifically, a QR factorization
B = Q0R is computed, then B is overwritten by R, Q is set to Q0, and A is overwritten by
QT

0 A. Since these steps are common to all HT reduction algorithms and parallel formulations
for them are well understood [7], we assume from now on that the input matrix pair (A, B)
already has B in upper triangular form.

The remainder of the paper is organized as follows. Notation and terminology are de-
scribed in Section 2. The sequential KKQQ algorithm is recalled in Section 3. An overview
of the new parallel formulation of KKQQ is given in Section 4. Various aspects of the paral-
lel formulation are described in Sections 5–8. Computational experiments are reported and
analyzed in Section 9, and Section 10 concludes and mentions future work.

2 Notation and terminology
Section 2.1 introduces notation and terminology related to numerical linear algebra and Sec-
tion 2.2 introduces notation and terminology related to parallel and distributed computing.

2.1 Numerical linear algebra

A rotation in the (k, k + 1)-plane is an n× n real orthogonal matrix of the form

G =


Ik−1

c s
−s c

In−k−1

 ,

where c2 + s2 = 1 and Ik is the k × k identity matrix. In the matrix multiplication GA, the
rotation G is said to act on rows k and k + 1 of A, since only these two rows of the product
differ from the corresponding rows of A. Similarly, in the multiplication AG, the rotation acts
on columns k and k + 1. A rotation as defined here is a restricted form of a Givens rotation
acting on two adjacent rows/columns.
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A transformation is an n× n orthogonal matrix of the form

U =

 Ik−1
Û

In−k−m+1

 ,

where Û is an orthogonal matrix of size m × m. A transformation is said to act on rows
k : k + m − 1 in the matrix multiplication UA and on the corresponding set of columns in
AU . Note that a rotation is just a special case of a transformation with

Û =
[

c s
−s c

]
.

A rotation sequence 〈G1, G2, . . . , Gr〉 is an ordered set of rotations acting on rows (columns)
from the bottom up (from right to left). Formally, if Gi acts on rows/columns k and k + 1,
then Gi+1 acts on rows/columns k − 1 and k.

A transformation sequence 〈U1, U2, . . . , Ur〉 is an ordered set of transformations acting on
rows (columns) from the bottom up (from right to left). Formally, if Ui acts on rows/columns
k1 : k2 and Ui+1 acts on rows/columns k′1 : k′2, then k′1 ≤ k1 ≤ k′2 ≤ k2. Note that a rotation
sequence is a special case of a transformation sequence.

A rotation graph R = (V, E) is a partially ordered set of rotations. A vertex v ∈ V
represents a rotation and is uniquely labeled by a pair of integers (i, j). An edge (u, v) ∈ E
represents a precedence constraint on the two rotations and states that u must be applied
before v to preserve correctness of some numerical computation. The set of vertex labels in
R is defined by a positive integer s and two sequences of integers 〈`1, . . . , `s〉 and 〈u1, . . . , us〉
as follows:

{(i, j) | 1 ≤ i ≤ s and `i ≤ j ≤ ui} .

Moreover, the lower and upper bounds `i and ui are constrained such that `i+1 ∈ {`i, `i + 1}
and ui+1 ∈ {ui, ui + 1}. The edge set E is defined by the following rules on the vertex labels:

1. If u is labeled (i, j) and v is labeled (i, j − 1), then (u, v) ∈ E .

2. If u is labeled (i, j) and v is labeled (i + 1, j + 1), then (u, v) ∈ E .

For a given i, the subset of the vertices whose labels are in the set {(i, j) | `i ≤ j ≤ ui} form a
rotation sequence referred to as sequence i of R. A rotation graph captures all possible ways
to reorder the application of a set of rotations without altering the numerical result compared
to the baseline of applying the sequences in the order 1, 2, . . . , s. Figure 1 provides a small
example of a rotation graph with two sequences of rotations.

(1, 1) (1, 2) (1, 3) (1, 4)

(2, 2) (2, 3) (2, 4)

Sequence 1

Sequence 2

Figure 1: Example of a rotation graph with s = 2, `1 = 1, `2 = 2, and u1 = u2 = 4.

A rotation supernode R′ of a rotation graph R is a subgraph of R with no directed path
that both starts and ends in R′ and contains a vertex not in R′. Given a partitioning of the
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vertices of a rotation graph R into disjoint rotation supernodes, the graph that is induced by
contracting each supernode is a directed acyclic graph referred to as a rotation supergraph.
A rotation supergraph generalizes the concept of a rotation graph to coarser units of com-
putation. Each rotation supernode can be explicitly accumulated to form a transformation
and then the rotation supergraph can be applied using matrix–matrix multiplications based
on these transformations. Figure 2 illustrates one of many possible ways to form a rotation
supergraph (bottom) from a given rotation graph (top).

(1, 1) (1, 2) (1, 3) (1, 4)

(2, 2) (2, 3) (2, 4)

{(1, 1), (1, 2)}
{(1, 2), (2, 3)}

{(1, 3), (2, 4)}
{(1, 4)}

Figure 2: Illustration of a partitioning of a rotation graph into rotation supernodes (top) and
the resulting rotation supergraph (bottom).

2.2 Parallel computing

The parallel computer consists of P = PrPc processors/cores, each running a process with its
own private memory. The processes are arranged in a logical two-dimensional mesh of size
Pr × Pc and are labeled with (p, q) where p ∈ {0, 1, . . . , Pr − 1} is the mesh row index and
q ∈ {0, 1, . . . , Pc − 1} is the mesh column index.

The processes communicate by sending explicit messages. Point-to-point messages have
non-blocking send semantics and blocking receive semantics, while all collective operations
are blocking. These are the semantics used in the Basic Linear Algebra Communication
Subprograms (BLACS) library [7], which we used in the implementation. The same semantics
can also be obtained using the Message Passing Interface (MPI).

A matrix A is said to be distributed over the process mesh with a two-dimensional block-
cyclic distribution with block size nb if the matrix element aij is assigned to process (p, q),
where p = b(i− 1)/nbc mod Pr and q = b(j − 1)/nbc mod Pc.

3 The sequential KKQQ HT reduction algorithm
This section recalls the KKQQ HT reduction algorithm [11] since it is the foundation of our
parallel formulation. Refer to the original publication for details.

The idea of Moler and Stewart’s algorithm [13] is to systematically reduce the columns
of A from left to right using a sequence of rotations applied from the bottom up for each
column. After reducing a column, the resulting sequence of rotations is applied to the upper
triangular matrix B, which creates fill in the first sub-diagonal and thus changes the structure
of B from upper triangular to upper Hessenberg. The next step is to remove the fill in B by a
sequence of rotations applied from the right. This step can be viewed as an RQ factorization
of a Hessenberg matrix. The resulting rotations are then applied also to A. After applying
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this procedure to the first n− 2 columns of A, the HT reduction is complete. The orthogonal
matrices Q and Z that encode the transformation from (A, B) to (H, T ) can be obtained by
accumulating the rotations applied from the left into Q and the rotations applied from the
right into Z. The main idea of the KKQQ algorithm is to delay a large fraction of the work
involved in the application of rotations in Moler and Stewart’s algorithm until the work can
be applied more efficiently (in terms of communication through the memory hierarchy) using
matrix–matrix multiplications.

A

A1 A2

A3

j0
j0 + w

j0 + 1

j0 + 1
B

B1

B2

j0 + 1

j0 + 1

Figure 3: Block partitioning of the matrices A and B used by Algorithm 1.

Algorithm 1 gives an overview of the KKQQ algorithm and can be described as follows.
The outer loop on line 1 loops over column panels of A of width w from left to right and
j0 denotes the first column index of the current panel. The first row index of the panel is
j0 + 1. The panel is denoted by A1 in Figure 3. The current panel width is determined on
line 2. The matrices A and B are logically partitioned as in Figure 3. Two rotation graphs
Rleft (for rotations applied from the left) and Rright (for rotations applied from the right) are
initialized on line 4. The rotation graphs are empty in the sense that there are no rotations yet
associated with the vertices. The remainder of the outer loop body consists of three phases:
the rotation construction phase, where rotations are constructed with a minimum of work
performed, the rotation accumulation phase, where the rotations are partitioned into rotation
supernodes and explicitly accumulated, and the delayed update phase, where the remaining
work is performed by applying the transformations. The three phases are described in more
detail below.

Rotation construction: The rotation construction phase encompasses the entire inner
loop on line 5. This loop iterates over the columns in the current panel from left to right
and j denotes the current column index. The current column is brought up-to-date with
respect to delayed updates from previous iterations in the inner loop on line 6. The current
column is then reduced on line 7, which generates sequence j − j0 + 1 of Rleft. This newly
constructed sequence is then applied to B1 from the left on line 8, which creates fill in its first
sub-diagonal. The block B1 is then reduced back to upper triangular form on line 9, which
generates sequence j − j0 + 1 of Rright. This newly constructed sequence is then applied to
A1 and A2 from the right on line 10.
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Algorithm 1: The KKQQ [11, Algorithm 3.2] HT reduction algorithm
Data: Matrices A, B ∈ Rn×n, where B is upper triangular, orthogonal matrices Q, Z ∈ Rn×n, and a

block size w ∈ {1, 2, . . . , n}.
// Loop over panels of width w from left to right

1 for j0 ← 1 : w : n− 2 do
// Determine the current block size

2 ŵ ← min{w, n− j0 − 1};
// THE ROTATION CONSTRUCTION PHASE

3 Partition A and B as in Figure 3;
4 Let Rleft and Rright be empty rotation graphs (no rotations yet attached to the vertices) with ŵ

sequences, lower bounds `i = j0 + i, and upper bounds ui = n− 1 for i = 1, 2, . . . , ŵ;
// Loop over the columns in the panel from left to right

5 for j ← j0 : 1 : j0 + ŵ − 1 do
6 Apply sequences 1, 2, . . . , j − j0 of Rleft to the j’th column of A;
7 Reduce the j’th column of A and add the rotations as sequence j − j0 + 1 of Rleft;
8 Apply sequence j − j0 + 1 of Rleft to B1 from the left;
9 Reduce B1 from the right and add the rotations as sequence j − j0 + 1 of Rright;

10 Apply sequence j − j0 + 1 of Rright to A1 and A2 from the right;
// THE ROTATION ACCUMULATION PHASE

11 Partition Rleft and Rright into rotation supergraphs and accumulate each rotation supernode into
a transformation;

// THE DELAYED UPDATE PHASE
12 Apply the transformations in Rleft to A2 from the left;
13 Apply the transformations in Rleft to QT from the left;
14 Apply the transformations in Rright to A3 from the right;
15 Apply the transformations in Rright to B2 from the right;
16 Apply the transformations in Rright to Z from the right;

Rotation accumulation: The rotation construction phase has generated the two rotation
graphs Rleft and Rright. The purpose of the rotation accumulation phase is to partition these
graphs into rotation supernodes of an appropriate size and then explicitly accumulate each
supernode into a transformation. The supernodes should in general span all ŵ sequences
(effectively resulting in a rotation supergraph that is linear) and their size should be such
that the transformations are of size close to 2ŵ × 2ŵ to minimize the overhead of the accu-
mulation [12]. All of this occurs on line 11.

Delayed updates: The transformations are applied using matrix–matrix multiplications
to parts of A, B, Q, and Z in the delayed update phase. The rotations from the left are
applied to A2 and QT on lines 12–13. The rotations from the right are applied to A3, B2,
and Z on lines 14–16.

4 Overview of the parallel formulation
Our parallel formulation of Algorithm 1 consists of several parts that are parallelized in
different ways. This section gives an overview of the algorithm and identifies the parts and
connects them to the underlying sequential algorithm. The details of each part are given
separately in Sections 5–8.

The input matrices A, B, QT, and Z are assumed to be identically distributed across
the process mesh using a two-dimensional block-cyclic distribution with block size nb. The
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notation A(p,q) refers to the submatrix of the distributed matrix A that is assigned to process
(p, q). Similarly, the notations A(p,∗) and A(∗,q) refer to the submatrices assigned to mesh row
p and mesh column q, respectively.

The rotation graphs Rleft and Rright are represented by two-dimensional arrays of size
n× ŵ and are replicated on all processes.

The following are the main parts of the parallel formulation. The update and reduction of
the current column of A (lines 6–7) is referred to as UPDATEANDREDUCECOLUMN and is described
in Section 5. The application of a sequence of rotations from the left (line 8) is referred to as
ROWUPDATE and is described in Section 6. The reduction of B back to triangular form (line 9)
is referred to as RQFACTORIZATION and is described in Section 7. The application of a sequence
of rotations from the right (line 10) is referred to as COLUPDATE and is conceptually similar
to ROWUPDATE. The accumulation of rotations into transformations (line 11) is referred to as
ACCUMULATE and is described in Section 8. The application of a sequence of transformations
from the left (lines 12–13) is referred to as BLOCKROWUPDATE and is conceptually similar to
ROWUPDATE. Finally, the application of a sequence of transformations from the right (lines 14–
16) is referred to as BLOCKCOLUPDATE and is also conceptually similar to ROWUPDATE.

5 Updating and reducing a single column
The input is a rotation graph and a partial column of a distributed matrix. The purpose is
to apply the rotation graph to the column and then reduce it by a new sequence of rotations.
Since applying a rotation sequence to only one column is inherently sequential, parallelism can
be extracted only by pipelining the application of multiple sequences. Specifically, one process
can apply rotations from sequence i while another process applies rotations from sequence
i+1. With s sequences, up to s processes can be used in parallel with this pipelining approach.
In practice, however, such a parallelization scheme is very fine-grained and leads to a lot of
parallel overhead—especially in a distributed memory environment—and therefore requires a
sufficiently long column and sufficiently many sequences to yield any speedup. Therefore, we
dynamically decide on a subset of the processes (ranging from a single process to the entire
mesh) onto which we redistribute the column and apply the sequences in parallel. While this
part of the algorithm accounts for a tiny proportion of the overall work, its limited scalability
makes it a theoretical bottleneck that ultimately limits the overall scalability of our parallel
HT reduction.

6 Wavefront scheduling of a rotation sequence
The dominating computational pattern in Algorithm 1 is the application of a sequence of
rotations or transformations and is manifested in ROWUPDATE, COLUPDATE, BLOCKROWUPDATE,
and BLOCKCOLUPDATE. There are also close connections to the pattern in RQFACTORIZATION.
This section describes a novel scheduling algorithm that is capable of using the processes
efficiently and generates a pattern of computation that resembles wavefronts, hence the name.

We treat in this section only the special case of applying a sequence of rotations from the
left to a dense matrix. The method readily extends to upper triangular matrices, to sequences
applied from the right, and to sequences of transformations. We assume that the sequence of
rotations is replicated on all processes.
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A first observation is that applying rotations from the left does not cause any flow of in-
formation across columns of the matrix. Hence, each column can be independently updated.
In our parallel setting, this implies that there will be neither communication nor synchro-
nization between processes on different mesh columns. Therefore, we may assume without
loss of generality that the matrix is distributed on a Pr × 1 mesh, i.e., a mesh with a sin-
gle column. For a matrix distributed on a general mesh, one simply applies the scheduling
algorithm independently on each mesh column.

The rest of this section is organized as follows. Section 6.1 motivates the need for a more
versatile scheduling algorithm by illustrating why a straightforward approach leads to poor
scalability. Section 6.2 gives a high-level overview of the algorithm. Fundamental building
blocks of the algorithm are detailed in Section 6.3, and the final details of the algorithm as a
whole are given in Section 6.4.

6.1 Why a straightforward approach scales poorly

The straightforward approach of applying each rotation completely one after the other does
not scale because most of the time only one of the P processes are active and occasionally two
processes are active. This is illustrated by the Gantt-chart in Figure 4. Each rotation in the
sequence is classified as local if the two affected rows belong to the same process and as cross-
border if the two rows belong to different processes. Hence, roughly a fraction (nb− 1)/nb of
all rotations are local and only a fraction 1/nb are cross-border.

local
cross-
border

local
cross-
border

local
cross-
border

local cross-

border local
cross-
border

local

i d l i n g

i d l i n g

i d l i n gp0

p1

p2

p3

time

Figure 4: Gantt-chart for the straightforward application of a sequence of rotations from the
left using a 4× 1 mesh. At most two processes are active at the same time.

6.2 Overview of the wavefront scheduling algorithm

To improve on the straightforward application it becomes necessary to split the application of
a rotation into several independent operations and introduce parallelism through pipelining.
Specifically, the columns are partitioned into N̂b blocks of size n̂b. The block size n̂b is
independent of the distribution block size nb, but is closely related to the degree of concurrency
and should be chosen such that N̂b ≥ Pr in order to use all processes. With fewer than Pr
blocks, there is not enough concurrency to keep all processes busy at the same time.

The N̂b distributed column blocks are referred to as fragments and play a key role in the
scheduling algorithm. The operations necessary to update a fragment are decomposed into
an alternating sequence of local and cross-border actions. A local action is the application
of a maximal contiguous subsequence of local rotations, and a cross-border action is the
application of a cross-border rotation. Due to the flow of data upwards in each column, the
actions associated with a particular fragment need to be performed in a strictly sequential
order.
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Consider a single fragment at any given moment during the computation. Either the
fragment has already been completely updated or there is a uniquely identified next action to
perform on that fragment. If the next action is a local action, then the fragment is associated
with the process that owns the distribution block affected by the local rotations. If the
action is instead a cross-border action, then the fragment is associated with a pair of adjacent
processes, namely those that own the two distribution blocks affected by the cross-border
rotation. In essence, each fragment is at any point in time associated either with a particular
process or with a particular pair of adjacent processes. This association is used to make the
scheduling algorithm more efficient.

0 1

2

34

5

Figure 5: The twelve slots (local slots as circles and cross-border slots as squares) for the
case of P = 6 processes. The circular arrow shows how the slots are ordered.

Associated with each process and with each pair of adjacent processes is a slot. A slot
contains all the fragments that are currently associated with its related process(es). There
are Pr local slots, each associated with a single process, and also P cross-border slots, each
associated with a pair of adjacent processes. As an example, consider the twelve slots for the
case Pr = 6 illustrated in Figure 5. The local slots (and also the processes) are identified by
circles. The cross-border slots are identified by squares. The adjacency of slots and processes
is illustrated by lines. A fragment systematically moves from slot to slot in response to the
completion of its actions. The direction in which a fragment moves is indicated by an arrow
in Figure 5.

The wavefront scheduling algorithm revolves around the concept of a parallel step. A
parallel step is a set of actions of the same type (local or cross-border) for which no two
actions belong to fragments residing in the same slot. A parallel step is maximal if it involves
one action from every slot of the chosen type. Since the type of action in a parallel step
is homogeneous, one can refer to the steps as either local or cross-border. The actions in a
parallel step can be performed in a perfectly parallel fashion (see Section 6.3 below) and a
maximal step leads to no idling, which makes parallel steps useful as building blocks for an
efficient schedule. The aim of the wavefront scheduling algorithm is to construct and execute
a shortest possible sequence of parallel steps.

How to obtain a minimal sequence of parallel steps is an open problem. We conjecture
that using a greedy algorithm that adheres to the following rules will yield a close-to-optimal
solution.

1. Choose between a local and cross-border parallel step based on which type of step will
lead to the execution of the most actions.

2. Choose from each slot of the appropriate type (local or cross-border) the fragment that
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has the most remaining actions.

The rationale behind Rule 1 is to greedily do as much work as possible. The rationale behind
Rule 2 is to avoid ending up with a few fragments with many remaining actions and is based
on the critical path scheduling heuristic.

6.3 Executing a parallel step

6.3.1 Executing a local parallel step

A local parallel step is perfectly parallel since it involves only local actions and hence requires
neither communication nor synchronization. Ideally, the parallel step is maximal and then
every process has exactly one task to perform and the tasks have roughly the same execution
time as a consequence of the homogeneous block size n̂b.

6.3.2 Executing a cross-border parallel step

A cross-border parallel step involves pairwise exchanges of data between pairs of adjacent
processes. Ideally, the parallel step is maximal and in this case every process would be
involved in two unrelated cross-border actions.

row k

buffer

Leading process

Trailing process

buffer

row k + 1

Gk

Gk

Figure 6: Illustration of a cross-border rotation Gk applied to rows k and k+1 of a fragment.
The two processes begin by exchanging rows and finish by updating their respective local rows.

Figure 6 illustrates how the work of applying a cross-border rotation to a fragment is
coordinated between the two processes involved in the operation. A cross-border rotation Gk

is applied to rows k and k + 1. The former is held by the so-called leading process and the
latter by the so-called trailing process. Both processes begin by sending their respective local
rows to the other process. Now each process has a copy of both rows and finishes by updating
its local row.

Since a process can be involved in two unrelated cross-border actions in one parallel
step, one needs to schedule the sends and receives in a way that avoids deadlock. Algorithm 2
describes one solution to this problem for a general (i.e., not necessarily maximal) cross-border
parallel step. A basic observation that is fundamental to the communication algorithm is that
if a process is involved in two actions, then it will be the leading process in one of them and
the trailing process in the other. That Algorithm 2 is deadlock-free is shown in Proposition 1.

Proposition 1. Algorithm 2 is deadlock-free for any number of processes assuming that sends
are non blocking.

10



Algorithm 2: Execution of a cross-border parallel step
1 Let p ∈ {0, 1, . . . , P − 1} be the rank of this process;
2 Let L denote the action (if any) in which this process is the leading process;
3 Let T denote the action (if any) in which this process is the trailing process;
4 Let kL and kT denote the indices of the corresponding cross-border rotations;
5 if L is defined then
6 Send row kL of the fragment associated with L to process (p + 1) mod P ;
7 if T is defined then
8 Send row kT + 1 of the fragment associated with T to process (p− 1) mod P ;
9 Receive a row from process (p− 1) mod P into a buffer;

10 Update row kT + 1 of the fragment associated with T using rotation GkT ;
11 if L is defined then
12 Receive a row from process (p + 1) mod P into a buffer;
13 Update row kL of the fragment associated with L using rotation GkL ;

Proof. We first show that deadlock cannot occur for a maximal parallel step. Then we argue
that deadlock cannot occur for non-maximal parallel steps either.

Consider a maximal parallel step. Label the two sends by s1 and s2 in the order that they
are executed by Algorithm 2. Similarly, label the two receives r1 and r2 in the order they are
executed. Since the step is maximal, both L and T will be defined and hence all then-clauses
will be executed. Only the ordering of the sends and receives are relevant for the purpose of
analyzing for deadlock. Consider any process pk ∈ {0, 1, . . . , P − 1}. Figure 7 illustrates the
sequencing due to program order of the two sends and two receives (middle column) executed
by process pk. Also shown are the sends and receives of the two adjacent processes (left and
right columns, respectively) and the matching of sends and receives. Figure 7 is merely a
template from which a complete dependence graph can be constructed for any given P . In
the extreme case of P = 2, the left and right columns are actually the same. In the extreme
case of P = 1, there is only one column and each send is matched by a receive on the same
process.

There can be at most one ready task per column, due to the (vertical) program order
dependencies. Furthermore, there is one process dedicated to each column and therefore every
ready task will eventually be executed. As a consequence, the only way for deadlock to occur
is if the dependence graph contains a directed cycle. Since every edge in Figure 7 is directed
downwards, a directed cycle cannot exist regardless of P . This shows that Algorithm 2 is
deadlock-free for maximal parallel steps.

Suppose that the step is not maximal. Then we effectively need to remove some of the
nodes and edges in the dependence graph. The arguments used for the maximal case remain
valid and hence the algorithm is deadlock-free also for this case.

6.4 The wavefront scheduling algorithm

This section describes the details of the wavefront scheduling algorithm (Algorithm 3).
At the top level of Algorithm 3 is a loop that continues until all actions have been per-

formed. A subset S of the slots is chosen such that all slots in the set have the same type and
contain at least one fragment. The choice is made according to Rule 1 in Section 6.2. The
function Size returns for a given slot the number of fragments (possibly zero and at most
N̂b) that currently resides in that slot. The algorithm terminates when there is no fragment
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Figure 7: Dependencies between sends and receives in Algorithm 2 illustrated for three adja-
cent processes.

in any of the slots. The set S of slots is then mapped to a set F of fragments by selecting
from each slot the fragment with the most remaining actions. The choice is made according
to Rule 2 in Section 6.2. The selection is carried out by the function Select. The parallel
step defined by the set of fragments F is performed as described in Section 6.3. Finally, each
fragment is either moved to its next slot or removed altogether. The function Slot returns
the slot in which a given fragment currently resides (or is undefined if the fragment has been
completed). The function Next returns the next slot relative to a given slot. The function
ActionCount returns the number of actions remaining in a given fragment.

Figure 8 provides an example of the movement of fragments after one iteration of Algo-
rithm 3 for the case of P = 4 processes. Each fragment is illustrated by a circle and the eight
slots are indicated by eight columns labeled 0 through 7 in a clockwise direction relative to
Figure 5. Figure 8(a) shows the state of the slots before the iteration. Since there are nL = 4
non-empty local (L) slots but only nB = 3 non-empty cross-border (B) slots, Algorithm 3
will choose to perform a local parallel step and set S = {0, 2, 4, 6}. One fragment from each
of the chosen slots will then be selected, and these are shown in green in Figure 8(b). After
completing the parallel step, the four selected fragments move to their respective next slots,
i.e., from slot s ∈ {0, 1, . . . , 7} to (s − 1) mod 8. The resulting state of the slots after the
iteration is shown in Figure 8(c).

The bottom of Figure 9 illustrates a simulated schedule produced by Algorithm 3 for a
rotation sequence applied from the right using a 4×4 process mesh. The processes are labeled
in row-major order, so the first group of four traces belong to the first mesh row and so on.
Besides the pipeline startup and shutdown phases, the processes are active all the time. The
top of the figure shows a corresponding trace for a rotation sequence applied from the left to
an upper triangular matrix. (Note that the time scales in the three subfigures are different.)
The mesh columns are less in sync and the load imbalance is more severe than in the dense
case. However, the schedule can still activate all processes at the same time.

12



(a) Before

0
L

1
B

2
L

3
B

4
L

5
B

6
L

7
B

number
type

fr
ag

m
en
ts

(b) During

0
L

1
B

2
L

3
B

4
L

5
B

6
L

7
B

number
type

fr
ag

m
en
ts

(c) After

0
L

1
B

2
L

3
B

4
L

5
B

6
L

7
B

number
type

fr
ag

m
en
ts

Figure 8: Example illustrating the movement of fragments after an iteration of Algorithm 3
that resulted in the execution of a local parallel step.

13



Timestep

P
ro
ce
ss

c

c

c

c

c

c

u

u

u

u

c

c

c

c

c

c

c

u

c

u

u

u

u

u

c

u

C

u

c

c

C

c

c

C

u

c

c

u

C

c

u

u

u

u

c

u

u

C

u

u

C

u

u

c

c

C

C

u

c

c

C

u

C

c

c

u

C

C

c

u

u

u

u

C

u

u

u

C

u

u

u

C

u

u

u

C

C

C

C

u

C

C

C

u

C

C

C

u

C

C

C

u

u

u

u

C

u

u

u

C

u

u

u

C

u

u

u

C

C

C

C

u

C

C

C

u

C

C

C

u

C

C

C

u

u

u

u

C

u

u

u

C

u

u

u

C

u

u

u

C

C

C

C

u

C

C

C

u

C

C

C

u

C

C

C

u

u

u

u

C

u

u

u

C

u

u

u

C

u

u

u

C

C

C

C

u

C

C

C

u

C

C

C

u

C

C

C

u

u

u

u

C

u

u

u

C

u

u

u

C

u

u

u

C

C

C

C

u

C

C

C

u

C

C

C

u

C

C

C

u

u

u

u

C

u

u

u

C

u

u

u

C

u

u

u

C

C

C

C

u

C

C

C

u

C

C

C

u

C

C

C

u

u

u

u

C

u

u

u

C

u

u

u

C

u

u

u

C

C

C

C

u

C

C

C

u

C

C

C

u

C

C

C

u

u

u

u

C

u

u

u

C

u

u

u

C

u

u

u

C

C

C

C

u

C

C

C

u

C

C

C

u

C

C

C

u

u

u

u

C

u

u

u

C

u

u

u

C

u

u

u

C

C

C

C

u

C

C

C

u

C

C

C

u

C

C

C

u

u

u

u

C

u

u

u

C

u

u

u

C

u

u

u

C

C

C

C

u

C

C

C

u

C

C

C

u

C

C

C

u

u

u

u

C

u

u

u

C

u

u

u

C

u

u

u

C

C

C

C

u

C

C

C

u

C

C

C

u

C

C

C

u

u

u

u

C

u

u

u

C

u

u

u

C

u

u

u

C

C

C

C

u

C

C

C

u

C

C

C

u

C

C

C

u

u

u

u

C

u

u

u

C

u

u

u

C

u

u

u

C

C

C

C

u

C

C

C

u

C

C

C

u

C

C

C

u

u

u

u

C

u

u

u

C

u

u

u

C

u

u

u

C

C

C

C

u

C

C

C

u

C

C

C

u

C

C

C

u

u

u

u

C

u

u

u

C

u

u

u

C

u

u

u

C

C

C

C

u

C

C

C

u

C

C

C

u

C

C

C

u

u

u

u

C

u

u

u

C

u

u

u

C

u

u

u

C

c

C

C

u

C

C

C

u

C

C

C

u

c

C

C

u

u

u

u

C

u

u

u

C

u

u

u

C

u

u

C

c

c

C

u

C

C

C

u

c

C

C

u

c

C

u

u

u

u

C

u

u

u

C

u

u

C

u

C

c

c

c

u

c

C

C

u

c

C

u

c

u

u

u

u

c

u

u

C

u

C

c

u

c

c

u

c

C

u

c

u

u

u

u

u

c

u

u

C

u

C

c

u

c

c

u

c

C

u

c

u

u

u

u

u

c

u

u

C

u

C

c

c

c

u

c

C

u

c

u

u

u

u

c

u

u

C

u

C

c

c

c

u

c

C

u

c

u

u

u

u

c

u

u

C

u

C

c

c

c

u

c

C

u

c

u

u

u

c

u

C

c

c

u

c

u

u

c

c

Timestep

P
ro
ce
ss

r

u

u

u

u

c

c

c

c

c

c

c

c

u

u

r

u

u

u

u

u

u

c

c

u

u

c

C

c

c

C

c

u

u

c

C

c

u

u

r

u

u

c

C

c

u

u

c

C

c

c

C

c

u

u

u

c

C

c

u

u

u

u

u

u

c

C

C

c

u

u

c

C

C

c

c

C

C

c

u

u

u

c

C

C

c

r

u

u

u

u

c

C

C

c

u

u

c

C

C

c

c

C

C

c

u

u

u

c

C

c

u

u

u

u

u

u

C

C

c

c

u

u

C

C

c

c

C

C

c

c

u

u

C

c

c

u

u

u

u

C

c

c

u

u

r

C

c

c

C

c

c

u

u

C

c

c

u

u

u

u

u

c

c

C

u

u

C

c

c

C

c

c

C

u

r

u

c

c

C

u

u

u

u

u

u

c

c

C

u

u

u

c

c

C

C

c

c

C

C

u

u

c

c

C

C

u

u

r

u

u

c

C

c

u

u

c

C

c

c

C

c

u

u

u

c

C

c

u

u

u

u

u

u

c

C

C

c

u

u

c

C

C

c

c

C

C

c

u

u

c

C

c

r

u

u

u

u

c

C

c

u

c

C

c

c

C

c

u

u

u

u

u

u

u

u

C

c

c

C

c

c

C

c

c

C

c

c

u

u

r

u

u

u

u

u

u

u

C

c

c

C

c

c

C

c

c

C

c

c

C

u

u

u

u

u

u

r

u

c

c

C

c

c

C

c

c

C

c

c

C

u

u

u

u

u

u

u

u

c

C

c

c

C

c

c

C

c

c

C

c

u

u

r

u

u

c

c

u

u

c

c

c

c

u

c

C

c

u

u

u

c

c

r

u

c

C

c

c

c

u

c

C

c

u

u

u

u

c

c

u

u

C

c

c

C

c

c

u

C

c

c

u

u

c

c

u

c

c

c

c

u

r

c

c

u

u

c

c

u

c

c

c

c

u

c

c

u

r

u

c

c

u

u

c

c

c

c

u

c

C

c

u

u

c

c

u

c

c

c

c

c

c

r

u

u

c

c

u

u

c

c

u

c

c

c

c

r

u

c

c

c

c

u

u

u

u

c

c

c

c

c

c

c

c

r

u

u

u

c

c

c

c

c

c

r

u

u

c

c

c

c

r

u

c

c

Timestep

P
ro
ce
ss

u

u

u

u

c

c

c

c

c

c

c

c

u

u

u

u

u

u

u

u

c

C

c

c

C

c

c

C

c

c

C

c

u

u

u

u

u

u

u

u

u

u

u

u

c

C

C

c

c

C

C

c

c

C

C

c

c

C

C

c

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

c

C

C

c

c

C

C

c

c

C

C

c

c

C

C

c

u

u

u

u

u

u

u

u

u

u

u

u

c

C

c

c

C

c

c

C

c

c

C

c

u

u

u

u

u

u

u

u

c

c

c

c

c

c

c

c

Figure 9: Illustration of simulated schedules produced by variants of the wavefront scheduling
algorithm on a 4× 4 process mesh. The label ‘u’ means a local action, ‘r’ a reduction action,
‘c’ (lower case) a single cross-border action, and ‘C’ (upper case) a pair of cross-border
actions. Top: Rotations applied from the left to an upper triangular matrix (Section 6).
Middle: Rotations created and applied from the right to reduce a Hessenberg matrix to
upper triangular form (Section 7). Bottom: Rotations applied from the right to a dense
matrix (Section 6).
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Algorithm 3: Wavefront scheduling
1 SL is the set of local slots;
2 SB is the set of cross-border slots;
3 loop

// Select non-empty slots of the same type
4 S ← {s ∈ SL ∪ SB : Size(s) > 0};
5 nL ← |S ∩ SL|;
6 nB ← |S ∩ SB|;
7 if nL > nB then
8 S ← S ∩ SL;
9 else

10 S ← S ∩ SB;
// Terminate if all actions have been performed

11 if S = ∅ then terminate;
// Extract one fragment from each selected slot

12 F ← {Select(s) : s ∈ S};
// Perform the parallel steps

13 if nL > nB then
14 Perform a local parallel step on the fragments in F (Section 6.3.1);
15 else
16 Perform a cross-border parallel step on the fragments in F (Section 6.3.2);

// Move (or remove) the updated fragments
17 foreach f ∈ F do
18 if ActionCount(f) > 0 then
19 Slot(f)← Next(Slot(f));
20 else
21 Undefine Slot(f);

6.5 Overhead analysis of Algorithm 3

In this section, we analyze the overhead per iteration of the loop in Algorithm 3.
The slot data structures are numbered from 0 to 2P − 1 and accessed in constant time.

Each slot contains a set housing the fragments that currently reside in the slot.
Selecting the type of the parallel step and the non-empty slots can be accomplished in

Θ(P ) time by visiting each slot. Extracting from each slot a fragment with the most remaining
actions can be accomplished in O(N̂b) time if an unordered set data structure is used and
in O(log N̂b) time if a priority queue data structure is used. Finally, moving the fragments
can be accomplished in Θ(1) time if an unordered set data structure is used and in O(log N̂b)
time if a priority queue data structure is used.

In summary, the overhead per iteration is bounded by O(P +N̂b) if an unordered set data
structure is used and by O(P + log N̂b) if a priority queue data structure is used. For the
special case N̂b = P , the overhead is Θ(P ) regardless of the underlying data structure.

Note that the context in this section is a mesh of size P × 1. In reality, the scheduling
algorithm is applied independently on each mesh row or mesh column. Thus, for a mesh of
size
√

P ×
√

P , replace P with
√

P in all of the above.
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7 Wavefront RQ factorization of a Hessenberg matrix
The aim is to reduce an upper Hessenberg matrix to upper triangular form by creating and
applying a rotation sequence from the right. The pattern of computation has many similarities
with the pattern analyzed in Section 6 but with the addition that the rotations are not known
beforehand. This small difference causes profound effects, since it introduces both the need
for collective communication and also causes flow of information perpendicular to the flow
introduced by the sequence itself. In this section, we show how to extend the algorithm
presented in Section 6 to this computational pattern.

The rotation sequence is applied from the right, so the fragments are now row blocks
instead of column blocks. Moreover, the fragments are now aligned with the distribution
blocks, i.e., a fragment is the same as a distribution row block.

To generate new rotations and replicate them, we need to introduce a few more actions
besides the local and cross-border actions. The last local action on a fragment updates a block
on the diagonal. We replace this action with a new reduction action and remove the following
(and final) cross-border action (if any). The purpose of a reduction action is to reduce the
diagonal block and the column immediately to the left. After reducing the diagonal block,
the new rotations need to be replicated using a new reduction-broadcast action.

Since the rotations are not known beforehand, the fragments can no longer make progress
independently. To account for this, we distinguish between active and inactive fragments.
The active fragments are those that can perform their next action and the inactive fragments
are the remaining ones, i.e., those whose next action depends on rotations not yet locally
available. Each slot now contains a mix of active and inactive fragments. The function
ActiveSize returns the number of active fragments in a given slot.

The details of the extended wavefront scheduling algorithm are presented in Algorithm 4.
The new predicate Reduction, line 17, returns true if the next action on a given fragment
is a reduction action. Unlike the original algorithm, the extended algorithm needs to keep
track of the progress of all processes and not only the processes in its own mesh row. The
need for this extra bookkeeping is to be able to determine when a process should execute
the reduction-broadcast actions, see lines 22–24. The function ActiveSelect, which replaces
Select, returns one of the active fragments from a given slot.

The middle of Figure 9 illustrates a schedule produced by Algorithm 4 using a 4×4 mesh.
The reduction-broadcast action introduces a synchronization point that leads to significant
overhead throughout the execution. The amount of idling would be less if the number of
fragments was larger relative to the number of processes.

7.1 Overhead analysis of Algorithm 4

In this section, we analyze the overhead per iteration of the loop in Algorithm 4.
The following assumes that the mesh size is

√
P ×

√
P . The number of fragments is

denoted by Nb and is independent of P as Nb depends only on the size of the problem size n
and the distribution block size nb.

Selecting active slots can be accomplished in Θ(P ) time by scanning through all of the
√

P
slots associated with each of the

√
P mesh rows. Extracting from each selected slot a fragment

with the most remaining actions can be accomplished in O(
√

PNb) time if an unordered set
data structure is used and in O(

√
P log Nb) time if a priority queue data structure is used.

Finally, moving the fragments can be accomplished in Θ(
√

P ) time if an unordered set data
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Algorithm 4: Wavefront scheduling for the RQ factorization of a Hessenberg matrix
1 Si

L is the set of local slots on process mesh row i ∈ {0, 1, . . . , Pr − 1};
2 Si

B is the set of cross-border slots on process mesh row i ∈ {0, 1, . . . , Pr − 1};
3 Let (p, q) be the mesh row and column indices, respectively, of this process;
4 loop

// Select active slots
5 foreach i ∈ {0, 1, . . . , Pr − 1} do
6 Si ← {s ∈ Si

L ∪ Si
B : ActiveSize(s) > 0};

7 ni
L ← |Si ∩ Si

L|;
8 ni

B ← |Si ∩ Si
B|;

9 if ni
L > ni

B then
10 Si ← Si ∩ Si

L;
11 else
12 Si ← Si ∩ Si

B;

// Terminate if all actions have been performed
13 if ∀i ∈ {0, 1, . . . , Pr − 1} : Si = ∅ then terminate;

// Extract one active fragment from each selected slot
14 foreach i ∈ {0, 1, . . . , Pr − 1} do
15 F i ← {ActiveSelect(s) : s ∈ Si};
16 F ← F0 ∪ F1 ∪ · · · ∪ FPr−1;

// Find an active fragment (if any) whose next action is a reduction
17 R← {f ∈ F : Reduction(f)};

// Perform the parallel steps
18 if np

L > np
B then

19 Perform a local parallel step on the fragments in Fp (Section 6.3.1);
20 else
21 Perform a cross-border parallel step on the fragments in Fp (Section 6.3.2);
22 if R 6= ∅ then
23 R = {r};
24 Perform a reduction-broadcast action on the fragment r;

// Move (or remove) the updated fragments
25 foreach f ∈ F do
26 if ActionCount(f) > 0 then
27 Slot(f)← Next(Slot(f));
28 else
29 Undefine Slot(f);
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structure is used and in O(
√

P log Nb) time if a priority queue data structure is used.
In summary, the overhead per iteration is bounded by O(P +

√
PNb) if an unordered set

data structure is used and by O(P +
√

P log Nb) if a priority queue data structure is used.

8 Accumulation of rotations into transformation matrices
The rotations from both sides are accumulated into transformations. The transformations
should align (whenever possible) such that they act on two full and adjacent distribution block
rows/columns. This implies that the typical size of a transformation matrix is 2nb × 2nb.
Parallelism in the accumulation is exploited by assigning to each process a subset of the
accumulation tasks. After the local accumulation phase, the resulting transformations are
replicated across the relevant subsets of the mesh.

9 Computational experiments and results
To analyze the performance, scalability, and bottlenecks of our proposed parallel HT reduction
algorithm, we performed a number of computational experiments. Details of the implemen-
tation are given in Section 9.1. The setups of the experiments and the parallel computer
systems are described in Section 9.2. The results of the experiments are summarized briefly
in Section 9.3 followed by details of each experiment in the subsequent Sections 9.4–9.6.

9.1 Implementation details

The algorithm is implemented in Fortran 90/95 and uses the BLAS library for basic matrix
computations, the BLACS library for inter-process communication, and auxiliary routines
from the ScaLAPACK library.

The block sizes n̂b used by the wavefront scheduling algorithm, see Section 6.2, were
set on a per-call basis to the largest (although never smaller than 8) that exposes sufficient
parallelism to activate all processes; the number of blocks N̂b is set to 2×Pc for row operations
and 2×Pr for column operations. For the row update of B, the block size n̂b is set to n/2N̂b
in order to compensate for the load imbalance caused by the upper triangular structure.

The value of w, in Algorithm 1, is typically set to the distribution block size nb. The gain is
two-fold. Firstly, all elements and rotations belong to the same process column when reducing
w columns which makes the rotation accumulation and distribution simpler. Secondly, the
transformations resulting from w inner loops will never span over more than two rows or
columns which makes the blocked update easier to implement.

The input matrices Q and Z are treated as dense without structure.

9.2 Experiment setup

Two different parallel computer systems were used in the experiments: Triolith at the National
Supercomputer Centre (NSC) at Linköping University and Abisko at the High Performance
Computing Center North (HPC2N), at Umeå University. See Table 1 for details.

Each test case is specified by four integer parameters: the problem size n, the distribution
block size nb, and the process mesh size Pr × Pc. Except n, all parameters are tunable and
can be chosen to maximize performance. Since exhaustive search for optimal parameters is
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Table 1: Information about the Abisko and Triolith systems.
Abisko 64-bit AMD Opteron Linux Cluster
Processors Four AMD Opteron 6238 processors (12 cores) per node
Interconnect Mellanox Infiniband
Compiler Intel compiler
Libraries Intel MPI, ACML 5.3.1 (includes LAPACK functionality), ScaLAPACK 2.0.2
Triolith 64-bit HP Cluster Platform 3000 with SL230s Gen8 compute nodes
Processors Two Intel Xeon E5-2660 processors (8 cores) per node
Interconnect Mellanox Infiniband
Compiler Intel compiler
Libraries Intel MPI, Intel MKL 11.3 (includes ScaLAPACK and LAPACK functionality)

prohibitively expensive, preliminary experiments were used to determine a reasonable block
size nb. Only square meshes (Pr = Pc) were considered.

The input matrices are randomly generated with elements drawn from the standard normal
distribution. The time required by the initial reduction of B to triangular form is not included
in the measurements.

9.3 Summary of the experiments

Three sets of experiments were performed:

• Experiment 1: Reasonable distribution block sizes
The purpose of this experiment was to determine a reasonable distribution block size
to use for the subsequent experiments. The results of the experiment indicate that
nb = 100 is reasonable on both machines. See Section 9.4 for details.

• Experiment 2: Scalability
The purpose of this experiment was to evaluate the weak and strong scalability relative
to a state-of-the-art sequential implementation [11]. See Section 9.5 for details.

• Experiment 3: Bottlenecks
The purpose of this experiment was to characterize the cost and scalability of the major
parts of the parallel algorithm and identify bottlenecks that currently limit its scalability.
See Section 9.6 for details.

9.4 Experiment 1: Reasonable distribution block sizes

The distribution block sizes nb ∈ {40, 60, 80, . . . , 160} were tested on a problem of size n =
4000 and mesh of size Pr = Pc = 4 with the aim of finding a reasonable block size to use for
the subsequent experiments. The parallel execution times (in seconds) on both machines are
shown in Table 2. These results indicate that nb = 100 is reasonable on both machines.

Table 2: Impact of nb on Triolith and Abisko (n = 4000, Pr = Pc = 4). Times in seconds.
nb = 40 nb = 60 nb = 80 nb = 100 nb = 120 nb = 160

Triolith 32 28 28 27 27 28
Abisko 66 57 54 53 53 56
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More detailed experiments show that a smaller block size, down to 60, will make the serial
code somewhat faster, and the parallel slower. A larger block size, up to 140 will make the
parallel version somewhat faster, but the serial implementation slower. The gain and loss in
performance is however less than 10%, so using nb = 100 is fair and close to optimal for the
experiments discussed in Section 9.5 and 9.6.

9.5 Experiment 2: Scalability

The strong scalability of the parallel algorithm was measured in terms of speedup rela-
tive to a state-of-the-art sequential implementation of KKQQ [11] for problems of size n ∈
{4000, 8000, 12000, 16000} and meshes of size Pr × Pc for Pr = Pc ∈ {1, 2, . . . , 10}.
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Figure 10: Strong scalability (speedup relative to KKQQ on one core).

The results of the strong scalability experiments are shown in Figure 10. The sequential
algorithm is faster on one core than the parallel algorithm. The strong scalability increases
with larger problem sizes. The parallel efficiency is low, which indicates that much larger
problems than those tested are necessary for the algorithm to run efficiently.

Both memory-constrained and time-constrained forms of weak scalability were analyzed.
The memory-constrained weak scalability was measured by scaling up the problem size n with
the number of cores to keep the memory required per core constant. Specifically, for a problem
of size n1 on one core, the problem size on P cores was set to n1

√
P . The time-constrained

weak scalability, on the other hand, was measured by scaling up the problem size with the
number of cores to keep the flops required per core constant. Specifically, for a problem of
size n1 on one core, the problem size on P cores was set to n1 3

√
p.

The results of the weak scalability experiments, with n1 = 1000, are shown in Figure 11.
The memory-constrained problem scales well using up to 256 cores on both machines. Adding
more cores is not beneficial, since the time for communication and synchronization will in-
crease more and more, relative to the time for computation. The time-constrained setup
scales well using up to 64 cores, adding more cores is not fruitful at all. The setup suffers
from a small n1 resulting in smaller and smaller local problem size when the process mesh
size, and therefore the amount of communication, is increased. A larger n1 allows the use
of more cores efficiently. For example, using n1 = 2000 allows for using up to 256 cores on
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Figure 11: Weak scalability (speedup relative to KKQQ on one core). The labels show the
scaled problem size n.

Abisko, instead of 64, before the peak is reached.

9.6 Experiment 3: Bottlenecks

Profiling data was gathered in an effort to identify bottlenecks that can explain the limited
scalability observed in Section 9.5. For each call to a major subroutine, measurements of
the parallel execution time, the flop count, and the time spent in numerical computation
were made. For the purpose of these measurements, barrier synchronizations were inserted
before each subroutine call. In this way, load imbalances caused by one subroutine call do
not affect the measurements of the next. The names of the subroutines referred to in this
section correspond to the definitions in the end of Section 4.

The parallel cost of a parallel algorithm that takes T seconds to execute on P cores is
defined as the product PT . The parallel cost of a subroutine is the parallel cost that is at-
tributable to that subroutine. The relative costs of each subroutine for n = 8000 on various
meshes are shown in Figure 12. The results are qualitatively similar on both machines. Two
bottlenecks can be identified from these results. First, the UPDATEANDREDUCECOLUMN subrou-
tine, whose cost is almost negligible on one core, accounts for more than 30% of the cost on
100 cores. This can be understood since this part of the computation is barely parallelizable,
as explained in Section 5. Second, the RQFACTORIZATION subroutine accounts for almost 40%
of the cost on 100 cores whereas it accounts for around 20% on one core. This can be under-
stood in part by the larger overhead of the extended wavefront scheduling algorithm (relative
to the standard wavefront scheduling algorithm; see Section 7.1) and in part by the additional
synchronization and communication overheads inherent in the computation (see Section 7).

An alternative view of the profiling data is depicted in Figures 13 and 14. These figures
show the relative speedups of the subroutines defined as the ratio of the wall clock time at-
tributable to a subroutine when running on one core to the wall clock time when running the
subroutine on multiple cores. The wall clock times used in these calculations were obtained
by dividing the parallel cost of the subroutine with the number of cores. The coarse-grained
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Figure 12: Cost distribution across subroutines for n = 8000 on various process meshes. The
pattern orderings in the bar plots are the same as in the legend.
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Figure 13: Speedup for each subroutine on Triolith for n = 8000.
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Figure 14: Speedup for each subroutine on Abisko for n = 8000.

and highly parallel blocked routines scale essentially linearly on both machines1. The un-
blocked subroutines have poorer scalability, which is especially true for RQFACTORIZATION and
UPDATEANDREDUCECOLUMN. The tool Allinea Map2 reveals that our parallel algorithm spends
41% of the total time on communication using 16 cores, and the fraction increases to 58% using
36 cores. Looking at the unblocked routines RQFACTORIZATION and UPDATEANDREDUCECOLUMN,
the communication fraction increases from 44% to 76% and from 91% to 94% when going
from 16 to 36 cores. For the blocked routine BLOCKROWUPDATE(A), the communication fraction
decreases from 38% to 32% when increasing the number of cores from 16 to 36. Thus, the
heavy communication in the unblocked routines overshadows the nice scaling properties of
the blocked routines.

9.7 The parallel two-stage approach

The sequential two-stage approach can in some cases compete with the sequential (one-stage)
KKQQ algorithm [11]. However, the parallel two-stage algorithm proposed in [1] do not include
the cost-reducing innovations discovered later by [11]. In addition, the complexity of the two-
stage approach and the extra arithmetic operations leads to poor performance and scalability.
Specifically, running the parallel two-stage algorithm [1] on the weak scaling experiment as
in Section 9.5 requires a problem of size n = 5000 and a 5× 5 mesh before any speedup over
sequential KKQQ can be observed. The first stage takes less time than the second, despite
the workload ratio being in favor of the second stage. The scheduling ideas presented in this
paper can potentially be adapted to the two-stage approach.

10 Conclusion
We proposed a novel wavefront scheduling algorithm capable of scheduling sequences of ro-
tations or general transformations on matrices distributed with a two-dimensional block-

1The multicore processor on Abisko is designed such that each FPU is shared by two cores. When running
on 100 cores, there are only 50 FPUs available. This is a potential explanation for why the speedup on Abisko
is less than 50 on 100 cores.

2http://www.allinea.com/products/map

23



cyclic distribution. We applied the scheduling algorithm to several parts of a distributed
Hessenberg-triangular reduction algorithm and obtained a new formulation of Hessenberg-
triangular reduction for distributed memory machines. Experiments show that the parallel
implementation of the distributed HT-reduction algorithm is scalable, and proves to be good
alternative to the parallel two-staged approach. Its performance is however limited by the
scalability of two of the major subroutines. To significantly improve the results, both of these
bottlenecks need to be addressed.

The difference of using Householder reflections in the Hessenberg reduction and sequences
of Givens rotations in the Hessenberg-triangular reduction has far-reaching consequences.
Applying a Householder reflection onto an n × n matrix involves Θ(n2) operations and can
use up to p = n2 cores. The communication necessary would be one reduction per row or
column of the matrix. With the maximum number of cores and a tree-based reduction, the
communication cost would be (ts + tw) log2 p, where ts is the latency and tw the inverse
bandwidth. On the other hand, applying a sequence of Givens rotations onto an n × n
matrix also involves Θ(n2) operations but can use only up to p = n cores. The amount
of communication overhead depends on the chosen data distribution and rotation sequences
are applied from both sides in the Hessenberg-triangular reduction, which implies that the
distribution needs to strike a balance between the costs of the two cases, i.e. updates from
left and right. The communication overhead per row or column of the matrix is proportional
to the number of distribution block boundaries that need to be traversed. All of this is on
top of the added complexity of the wavefront scheduling algorithm that is necessary to keep
all cores busy. All said and done, these factors explain some of the difficulties in obtaining a
scalable Hessenberg-triangular reduction implementation.
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