

H2020-FETHPC-2014: GA 671633

NLAFET Working Note 11

Task-Based Parallel Algorithms for Eigenvalue
Reordering of Matrices in Real Schur Forms

Mirko Myllykoski, Carl Christian Kjelgaard Mikkelsen,

Lars Karlsson, and Bo Kågström

April, 2017

NLAFET Working Note

http://www.nlafet.eu/ 2/2

Document information
This preprint report is also published as Report UMINF 17.11 at the Department of Computing
Science, Umeå University, Sweden.

This version: May 30, 2017.

Acknowledgements
This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the grant agreement number 671633.

http://www.nlafet.eu/

Task-Based Parallel Algorithms for Eigenvalue
Reordering of Matrices in Real Schur Forms∗

Mirko Myllykoski
Carl Christian Kjelgaard Mikkelsen

Lars Karlsson
Bo Kågström

May 29, 2017

Abstract

We develop a task-based parallel algorithm for reordering eigenvalues of matrices
in real Schur form. We describe how we implemented the algorithm using StarPU
runtime system and report on experiments performed on a shared memory machine.
Compared with ScaLAPACK we achieve average speedup of 3. We have strong and
weak scaling efficiencies which are well above 50%. We are able to achieve more than
50% of the peak flop rate for all but the smallest matrices. The idle time and the
overhead is negligible except for the smallest matrices. The next step is to reconfigure
and further develop the code so that it can be applied to matrix pairs in generalized
Schur forms and run efficiently on distributed memory machines.

∗NLAFET Working Note 11. Report UMINF 17.11, Dept. Computing Science, Umeå University, SE
901 87 Umeå, Sweden. Results were presented at the SIAM Conference on Computational Science and
Engineering, Atlanta, Georgia, USA, 2017.

1

Contents

Contents 2

List of Figures 3

List of Tables 3

List of Algorithms 4

1 Introduction 5

2 State-of-the-art 6
2.1 Fundamental swapping kernels . 6
2.2 Sequential algorithm implemented in DTRSEN 7
2.3 Blocked algorithm implemented in BDTRSEN 7
2.4 Parallel algorithm implemented in PDTRSEN 8

3 Fundamental aspects of the new task-based algorithm 8

4 Implementation of the new task based algorithm 10
4.1 Data partition and distribution . 10
4.2 Entry points . 12
4.3 Task types . 13
4.4 Dependencies . 14
4.5 Task insertion . 18

4.5.1 Planning phase . 19
4.5.2 Blueprints . 22
4.5.3 Task insertion engine . 24

4.6 Tunable parameters . 27

5 Computational experiments 28
5.1 Computer system . 29
5.2 Test matrices . 29

5.2.1 Construction of the Schur basis Q 29
5.2.2 Construction of the Schur form S 30
5.2.3 Diagonal block selection process . 30

5.3 Experimental methodology . 30
5.4 Accuracy . 30
5.5 Time to solve . 31
5.6 Sequential execution . 31
5.7 Scalability . 34

5.7.1 Weak scalability . 34

2

5.7.2 Strong scalability . 35
5.8 Flop-rate . 35
5.9 Idle time and overhead . 37
5.10 Tunability . 37

6 Conclusion and future work 41

References 42

List of Figures
1 An example of how diagonal blocks are reordered in a blocked manner . . 7
2 An example of how diagonal windows are chained together 9
3 An example of how groups of diagonal blocks are connected to window chains 10
4 An example of how matrices are partitioned into square tiles 12
5 An illustration of how a data handle induces implicit dependencies 14
6 An example of how additional data handles complicate the data flow chart 15
7 A data flow chart for a window chain that covers the whole diagonal . . . 16
8 A simplified data flow chart . 17
9 An illustration of how two window chains interact with each other 17
10 An illustration of how overlapping window chains interact with each other 18
11 Key components of the StarPU implementation 18
12 An example of how windows are placed on the diagonal 20
13 An illustration of how a chain list is divided into multiple chains lists . . . 21
14 An illustration of how off-diagonal updates are divided into tasks 25
15 An illustration of how critical triangles are handled 25
16 An illustration of how low priority update tasks are handled 26
17 An illustration of how left update tasks are divided into priority groups . 27
18 An illustration of how update tasks are divided into priority groups 28
19 A schematic representation of a compute node on the Kebnekaise system . 29
20 A runtime comparison between PDTRSEN and the StarPU implementation . 32
21 Runtimes for BDTRSEN and the StarPU implementation 33
22 The weak scalability efficiency of the StarPU implementation 34
23 The strong scalability efficiency of the StarPU implementation 36
24 A lower bound for the flop rate of the StarPU implementation 38
25 The idle time and the overhead of the StarPU implementation 39
26 An example of a trace plot generated by the StarPU 40

List of Tables
1 AVX2 boost table for compute nodes on Kebnekaise 35

3

List of Algorithms
1 Task-based parallel eigenvalue reordering for standard Schur forms 11
2 Formation of a multi-part plan . 22
3 One-pass forward blueprint . 23
4 Two-pass backward blueprint . 23
5 One-pass forward chained blueprint . 24
6 One-pass backward chained blueprint . 24

4

1 Introduction
Let A ∈ Rn×n be a real matrix of dimension n. A non-zero vector x is an eigenvector of
A if there exists an eigenvalue λ such that Ax = λx. A subspace V ⊂ Rn×n is said to be
invariant with respect to A if v ∈ V ⇒ Av ∈ V . If x is an eigenvector of A, then V =
span{x} is an invariant subspace of A. In general, let v1, v2, . . . , vm be a set of eigenvectors
of A corresponding to the eigenvalues λ1, λ2, . . . , λm. Then V = span{v1, v2, . . . , vm} is an
invariant vector space of A, since for any v ∈ V we have

Av = A

(
m∑

i=1
αivi

)
=

m∑
i=1

αiAvi =
m∑

i=1
αiλivi ∈ V . (1)

In many situations one wants to compute an orthonormal matrix V whose columns
form an orthonormal basis for V . This can be accomplished by first computing a real Schur
decomposition A = QSQT using the QR algorithm and then reordering the decomposition
such that the eigenvalues associated with the desired invariant subspace appear in the
leading diagonal blocks of the updated matrix S. The first m columns of the updated
matrix Q will then form an orthonormal basis for V . Above, S is a real upper quasi-
triangular matrix with 1×1 and 2×2 blocks on the diagonal. In other words, S is a Schur
form of the matrix A. The orthogonal matrix Q is the related Schur basis. Note that even
if the entries of the matrix A are all real, some of the eigenvalues and eigenvectors may
still be complex. In particular, the complex conjugate pairs of eigenvalues of A appear as
2 × 2 blocks on the diagonal of S. We will hereafter refer to the 1 × 1 and 2 × 2 blocks
simply as blocks when it does not cause ambiguity.

For the generalized eigenvalue problem, the concept of a pair of deflating subspaces gen-
eralizes the notion of an invariant subspace. Orthonormal bases for deflating subspaces can
be computed in a similar fashion by first decomposing the matrix pair into its generalized
Schur form by applying the QZ algorithm and then reordering the selected (generalized)
eigenvalues to the top left corner of the generalized Schur form. There are real and complex
arithmetic analogues of both the Schur and generalized Schur forms and corresponding ver-
sions of the QR and QZ algorithms. For state-of-the-art MPI-based parallel algorithms for
the multishift QR and QZ algorithms with aggressive early deflation and the computation
of invariant or deflating subspaces, we refer to [2, 5].

Our long-term objective is to develop task-based parallel algorithms for the eigenvalue
reordering stage. We aim to cover both the standard and generalized Schur forms, in both
real and complex arithmetic, and for both shared and distributed memory. In other words,
a total of 8 variants. In this report, we focus on standard Schur forms in real arithmetic.
We develop a task-based parallel algorithm for shared memory systems and implement it on
top of the StarPU runtime system [1]. The core components of the algorithm generalize to
generalized Schur forms and complex arithmetic. In addition, the StarPU runtime system
has features that make it easy to convert a shared memory realization of an algorithm to a
distributed memory realization. Thus, extending the code to the other use cases is mostly
a matter of reconfiguring the current realization correctly and will be discussed at a later
date.

5

The rest of the paper is organized as follows. Section 2 reviews the existing state-of-the-
art algorithms for the standard eigenvalue reordering problem. We discuss the fundamental
kernels as well as both sequential and parallel algorithms. Fundamental aspects of the new
task based parallel algorithm are described in Section 3. Technical implementation aspects
of the new task based algorithm are addressed in Section 4. Results of experimental
evaluations of the algorithm are described in Section 5 and Section 6 concludes with some
related and future work.

2 State-of-the-art
In this section we briefly review the related work which is directly relevant for our current
work. We begin by discussing the kernels which form the basis of the considered algorithms.
Moreover, we discuss the sequential algorithm which is implemented in LAPACK as DTRSEN,
Kressner’s blocked improvement BDTRSEN, as well as, the parallel algorithm implemented
in ScaLAPACK as PDTRSEN. We refer to the cited references and the references therein for a
more thorough survey of the field.

2.1 Fundamental swapping kernels
The swapping kernels developed by Bai and Demmel [3] form the basis for most known
algorithms for the eigenvalue reordering problem. Consider a matrix S in real Schur form
which has only two diagonal blocks, that is,

S =
[
S11 S12
0 S22

]
,

where S11 and S22 have size at most 2 × 2. Then the swapping kernels can be used to
compute an orthogonal matrix V such that

V TSV =
[
S̃11 S̃12
0 S̃22

]
,

where S̃11 has the same eigenvalues as S22 and S̃22 has the same eigenvalues as S11. We
say that the blocks/eigenvalues have been swapped.

The swapping kernels are based on the robust solution of a tiny Sylvester equation by
solving the equivalent linear system using Gaussian elimination with complete pivoting
and scaling to avoid overflow. Backward stability is guaranteed by cheaply monitoring the
perturbations introduced by each swap and rejecting those swaps that lead to unacceptably
large errors. The authors were unable to find or construct an example were the method
failed, indicating that even though failures are a theoretical possibility they are extremely
rare in practice. Kågström and Poromaa (1996) [6] have extended the work by Bai and
Demmel to the generalized eigenvalue reordering problem. Their algorithm is based on the
robust solution of a tiny generalized Sylvester equation and similarly guarantees backward
stability.

6

2.2 Sequential algorithm implemented in DTRSEN

The sequential algorithm implemented in LAPACK as DTRSEN is based on the swapping
kernels by Bai and Demmel [3]. The selected blocks are systematically reordered to the
top left corner of the matrix by repeatedly swapping adjacent blocks. The algorithm scans
the diagonal of S from the upper left to the lower right corner and moves any selected
blocks to the top by a sequence of swaps. The orthogonal transformation constructed from
a small submatrix enclosing a pair of adjacent blocks affects all entries above and to the
right of the submatrix. In principle, it is possible to swap any pair of blocks, but unless
the blocks are adjacent, the real Schur form is destroyed by fill-in. The biggest drawback
of the approach used in DTRSEN is that it relies heavily on low-level BLAS operations and is
therefore inherently memory-bound.

2.3 Blocked algorithm implemented in BDTRSEN

(a) Before

××
×
×
×
×

×
×
×
×

×
×
×
×
×

×
×
×
×
×
×

×
×
×
×
×
×
×

×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×

×

×

×

(b) After

××
×
×
×
×

×
×
×
×

×
×
×
×
×

×
×
×
×
×
×

×
×
×
×
×
×
×

×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×

×

×

×

Figure 1: An example of a situation where three selected diagonal blocks (which all happen
to be of size 1× 1) are reordered in a blocked manner. The location of each selected block
is highlighted before (on the left) and after (on the right) the reordering. A window of
size 6 × 6 is placed on the diagonal and the selected blocks are reordered by a sequence
of swaps (in this case, 2 + 2 + 3 = 7 swaps). The off-diagonal submatrices that will be
updated afterwards are also highlighted.

Kressner (2006) [7] improves upon the scalar DTRSEN algorithm by reorganizing the
computations for improved cache reuse. More specifically, a group of diagonal blocks is re-
ordered within a small window on the diagonal as shown in Figure 1. The diagonal window
is placed on the diagonal such that the selected block furthest down the diagonal is located
flush against the bottom right corner of the window. The key idea is to only reorder the

7

diagonal window at this stage and accumulate the related similarity transformation into
a separate accumulator matrix. After processing the window, the accumulator matrix,
which is itself a similarity transformation, is then applied from the right to the submatrix
above the diagonal window and from the left to the submatrix to the right of the diagonal
window. The Schur form Q is also updated from the right. The off-diagonal updates can
be performed using level 3 BLAS subroutines which leads to much higher arithmetic inten-
sity. In addition, the diagonal window can be made small enough to fit into CPU caches.
Alternatively, the similarity transformations can be applied in their original factored form.

2.4 Parallel algorithm implemented in PDTRSEN

Granat, Kågström, and Kressner (2009) [4] present a parallel algorithm for both the stan-
dard and generalized reordering problems. The algorithms are based on those in [7] and
the software is expressed in the ScaLAPACK style, that is, the processes are arranged in a
mesh and the matrices are distributed in a two-dimensional block-cyclic fashion. Several
computational windows are introduced to increase the degree of concurrency. The algo-
rithm broadcasts the accumulator matrices separately to those MPI nodes that perform the
right updates and to those MPI nodes that perform the left updates. In addition, the algo-
rithm performs two global synchronizations each time a set of diagonal windows is moved
across MPI node boundaries. One of the downsides of this approach is that the broadcasts
and, in particular, the global synchronizations form bottlenecks which limit the level of
parallelism.

3 Fundamental aspects of the new task-based algo-
rithm

The aim of this section is to sketch the fundamental aspects of the task-based parallel
algorithm. Section 4 will delve into the many conceptual and technical complications that
must be addressed when mapping the algorithm to the StarPU runtime system. We find
it easier to comprehend the core of the algorithm when it is isolated from the practical
complications in this fashion.

As with the blocked BDTRSEN algorithm (see Subsection 2.3), the elementary tool used
here is the ability to process a small diagonal window, accumulate the related orthogonal
transformation to an accumulator matrix (local Q matrix) and only later apply the related
off-diagonal updates. Furthermore, multiple overlapping diagonal windows can be chained
together as shown in Figure 2, which allows us to gather a set of selected blocks to a
desired position on the diagonal. More specifically, the first window is placed such that the
selected block that is furthest down the diagonal is located flush against the bottom right
corner of the window. The remaining windows are placed such that the overlap between
two windows is exactly big enough to accommodate all selected blocks that fall within the
preceding windows. In this way, the windows can be processed in sequential order, starting
from the bottom window, such that the reordering that takes place in one window always

8

· ·· ···
····

·····

······

·······

········

·········

··········

···········

············

·············

∗

∗

∗

· ·· ···
····

·····

······

·······

········

·········

··········

···········

············

·············

∗
∗∗

· ·· ···
····

·····

······

·······

········

·········

··········

···········

············

·············

∗∗∗

· ·· ···
····

·····

······

·······

········

·········

··········

···········

············

·············

∗∗∗

Figure 2: An example of how three diagonal windows are chained together in an overlapping
manner so that three selected blocks are be gathered to the upper left corner of the matrix.
Each subfigure corresponds to a diagonal window (highlighted with red color) and a set
of related off-diagonal updates. The previous window is highlighted with gray color. Note
how the overlap between two windows grows as more and more selected blocks are gathered
from the diagonal.

moves the gathered blocks to the lower right corner of the next window. In the end, all
selected blocks that fell within the combined computational area of the window chain are
moved to the upper left corner of the topmost window.

The number of selected blocks that can be moved by a single window chain is limited by
the window size. Thus, the complete reordering procedure usually involves multiple window
chains that must be processed in a particular order. The selected blocks are divided into
multiple disjoint subsets or groups containing some number of neighboring selected blocks
(see Figure 3a). The first window chain is placed such that the first group falls within its
combined computational area and topmost window is placed in the upper left corner of
the matrix. The next window chain is placed such that the second group falls within its
combined computational area. Moreover, its topmost window is placed such that its upper
left corner is located one diagonal entry after the location where the last block of the first
group gets moved (see Figures 3b and 3c). The same procedure is then repeated until all
groups have been accounted for.

The main difference between the previous algorithms and our new approach is that we
have expressed our algorithm in the terms of the sequential task-flow (STF) model roughly
in the way shown in Algorithm 1. This means that we have encapsulated the various
computational operations inside tasks that are created in a sequentially consistent order
and all task dependencies can therefore be mechanically deduced by analyzing the data
flow.

The main benefits of this new approach are:

• Proper use of the STF model exposes the underlying parallelism automatically. In
particular, advanced runtime systems such as StarPU are able to automatically de-
termine when multiple chains can be processed in parallel. This can increase the
level of parallelism significantly.

• The approach does not require global synchronization (cf. global synchronization in
PDTRSEN). Instead, synchronization is done automatically on much lower level using

9

· ·· ···
····
·····

······

·······

········

·········

··········

···········

············

·············

··············

···············

················

·················

··················

···················

····················

·····················

······················

∗∗
∗
∗
∗
∗
∗
∗
∗

(a) Groups

· ·· ···
····
·····

······

·······

········

·········

··········

···········

············

·············

··············

···············

················

·················

··················

···················

····················

·····················

······················

∗∗
∗
∗
∗
∗
∗
∗
∗

(b) Window chains

· ·· ···
····
·····

······

·······

········

·········

··········

···········

············

·············

··············

···············

················

·················

··················

···················

····················

·····················

······················

∗∗∗∗∗∗∗∗∗

(c) After reordering

Figure 3: Examples of (a) how the selected blocks are divided into three groups (with three
1 × 1 blocks in each) highlighted with colors red, blue and green; (b) how the groups are
assigned to the window chains; and (c) how the matrix looks like after the window chains
have been processed. Note that we have visualized each window chain as a square whose
top left corner corresponds to the upper left corner of the topmost window in the window
chain. Similarly, the bottom right corner of the square corresponds to the bottom right
corner of the bottom window in the window chain.

information derived from the data flow. This means that different computational
stages can be merged together, thus reducing the idle time that might otherwise
occur between the stages.

• Different tasks can be given different priorities. This allows us to delay less important
tasks and instead concentrate on the critical path.

• The same code can be configured for shared memory and distributed memory use
cases. All necessary node to node communications can be derived from the data flow
once the inter-node data distribution is known.

• In future, a support for accelerator devices such as GPUs can be integrated into our
implementation with relative ease as only the window processing and update kernels
need be implemented for each computing platform. The runtime system will handle
all data transfers and make necessary scheduling decisions automatically1.

4 Implementation of the new task based algorithm

4.1 Data partition and distribution
StarPU uses data handles to model the data flow between tasks. A data handle can

1The algorithm may have to specify some extra information about the various implementations so that
StarPU can make informed decisions.

10

Algorithm 1: Task-based parallel eigenvalue reordering for standard Schur forms
Data: A real Schur decomposition A = QSQT and a Boolean array that defines the

selected subset of the blocks along the diagonal of S.
Result: An updated Schur decomposition A = Q̃S̃Q̃T for which the selected subset

of the blocks are gathered in the top left corner of S̃.
1 Partition the selected blocks into m groups of neighboring blocks (cf. Figure 3a);
2 for each group from the top down do
3 while some selected blocks in the current group are not in their final positions do
4 Place a window such that the block in the current group which is furthest

down the diagonal is located flush against the bottom right corner of the
window (cf. Figure 2);

5 Create a task for the processing of the window;
6 Create a set of independent tasks for the off-diagonal updates of S from the

left by partitioning the corresponding submatrix into blocks of columns and
assign one task to each block;

7 Create a set of independent tasks for the off-diagonal updates of S from the
right by partitioning the corresponding submatrix into blocks of rows and
assign one task to each block;

8 Create a set of independent tasks for the updates of Q from the right by
partitioning the corresponding submatrix into blocks of rows and assign one
task to each block;

encapsulate any conceivable data type but the built-in data interfaces for scalars, vectors
and matrices are adequate for many use cases. In our algorithm, the Schur form S and the
Schur basisQ are partitioned into square tiles as shown in Figure 4, and each non-zero tile is
registered with StarPU using a matrix interface. This means that StarPU considers each tile
to be an independent unit of data that can be acted upon. In addition, the Boolean array
that is used to indicate which diagonal blocks are selected is partitioned using the same
scheme. This partitioning scheme simplifies the implementation but, more importantly,
it also allows us to operate on different sections of the matrices without introducing too
many data dependencies.

StarPU-MPI is an extension that integrates StarPU with the standardized MPI message-
passing system. An algorithm may define all node to node communications explicitly
by using the provided wrapper functions or the algorithm may simply define how the
data is distributed among the nodes and let StarPU handle all necessary communication
automatically. In the second approach, the algorithm must provide an unique tag and
a rank (i.e. owner) for each data handle that is in some way involved in distributed
computations.

At the moment, our algorithm uses the second approach. We define the data distribu-
tion by splicing adjacent tiles into sections such that tiles that belong to the same section
have a common owner (rank). More specifically, a n × n matrix is divided into s × s

11

Q S selected
·····················

·····················

·····················

·····················

·····················

·····················

·····················

·····················

·····················

·····················

·····················

·····················

·····················

·····················

·····················

·····················

·····················

·····················

·····················

·····················

·····················

· ·· ···
····
·····

······

·······

········

·········

··········

···········

············

·············

··············

···············

················

·················

··················

···················

····················

·····················

·

·
·
·
·
·

·
·

·····················

∗
∗
∗
∗

∗

∗

Figure 4: An example of how a Schur basis Q and the related Schur form S (both of size
21× 21) are partitioned into square tiles of size 6× 6. The Boolean array that defines the
selected diagonal blocks is partitioned similarly. The left over tiles in the last tile row and
the tile column are truncated to match the matrix dimensions. For technical reasons (that
will be relaxed in the future), the tile size must be a multiple of 8.

sections which are then further divided into t × t tiles. Each section resides on some MPI
node. We tried to reduce the overhead by making each MPI node register only those tiles
that it actually needs. However, some tiles are needed by multiple MPI nodes. This is why
we implemented a separate subsystem that will automatically register a “placeholder” data
handle when a MPI node that does not own a tile requests a data handle to it. When this
happens, the subsystem also communicates the correct tag and rank to StarPU.

4.2 Entry points
At the moment, the implementation has three entry points:

reorder entry point follows a traditional approach where the user specifies the problem
through pointers, matrix dimensions and leading dimensions. All StarPU specific
details are hidden from the user and the thread that enters the reorder function
blocks until all tasks have been completed. However, the user can still influence
StarPU’s behavior through optional arguments.

submit_reorder entry point assumes that the matrices and the Boolean array that defines
the selected diagonal blocks are already partitioned in the correct way and registered
with StarPU. The corresponding StarPU data handles are forwarded as arguments.
The implementation extracts the block selection array and the locations of the 2× 2
diagonal tiles from the input handles. The thread that enters the submit_reorder
function blocks until all preceding dependencies related to the sub-diagonal and di-
agonal matrix S tiles have been resolved. The thread also blocks until all preceding
dependencies related to the block selection array have been resolved. The thread
returns from the function once all tasks have been inserted. This entry point allows

12

different StarPU based functions to be merged together without introducing global
synchronization points. The thread that enters the submit_reorder function will
block but only a small subset of data handles are involved in the blocking operations.

mpi_reorder entry point follows an approach similar to the reorder entry point. The
user specifies the data distribution and feeds the distributed data in the form of
pointers, section dimensions and leading dimensions. All StarPU specific details are
hidden from the user. The thread that enters the mpi_reorder function blocks until
all local tasks and communications have been completed.

4.3 Task types
StarPU encapsulates various computational kernels inside objects called codelets and each
task must have a codelet associated with it. Each codelet can have multiple implemen-
tations and StarPU is capable of automatically determining which implementation (and
which computational resource) should be used in a given situation. This, however, requires
that the algorithm specifies some extra information about the various implementations.

Our algorithm consists of three codelets:

process_window codelet performs the necessary transformations inside a diagonal compu-
tational window and accumulates the transformations into a local Q matrix. Depend-
ing on the window size, the codelet either reorders the window in a scalar manner
similarly to DTRSEN or in a blocked manner similarly to BDTRSEN. Prior to this, the
contents of the tiles that enclose the diagonal window are copied to a separate scratch
buffer. The reordered window copied back to the tiles once the reordering has been
completed.

left_update codelet performs a localized left update using a given local Q matrix. The
tiles that enclose the computational area are copied to a separate scratch buffer and
the actual update operation is performed using the BLAS DGEMM subroutine whose
output is directed into a second scratch buffer. Finally, the result is copied from the
second scratch buffer back to the original tiles.

right_update codelet performs a localized right update using a given local Q matrix.
The functionality is analogous to the left_update tasks.

Currently, each one of the codelets only has a CPU implementation. The right_update
codelet is the only one that is used to update both the Schur form S and the Schur basis
Q. From now on, when we are talking about right updates or right_update tasks, we
refer to those right updates or right_update tasks that modify the matrix S. In order
to avoid ambiguity, we will explicitly mention when we are referring to right updates or
right_update tasks that modify the Schur basis Q.

13

process_window

left_update right_update

local Q matrix

Figure 5: An illustration of how the local Q matrix flows from a process_window to the
corresponding left_update and right_update tasks inducing implicit dependencies in its
wake.

4.4 Dependencies
When an algorithm inserts a task, it must specify a codelet and a list of data handles. The
same list of data handles acts as an argument list for the codelet when the task is later
issued to a worker that executes the related codelet. StarPU uses this same argument list
when it derives the data flow from one task to another. If two tasks are given the same
data handle in their argument lists (i.e., they operate on the same tile), then depending on
the order in which the tasks are inserted and various data access flags, an implicit data de-
pendency may be induced between the tasks. For example, each inserted process_window
task is given a handle to a newly created local Q matrix so that the task can write the
accumulated transformation into the related memory buffer. The same handle is then fed
to the corresponding left_update and right_update tasks. This induces implicit depen-
dencies from the process_window task to the left_update and right_update tasks as
shown in Figure 5. The algorithm may define a separate list of static arguments which
is not taken into account in the data flow inferences. In addition, each task can be given
a priority. The default priority is always 0. Minimum (min) priority is always smaller
than or equal to default and maximum (max) priority is always larger that or equal to
default. Larger value signals higher priority.

The actual data flow chart is much more complicated as shown in Figure 6. The
process_window task accepts four data handles that together describe the diagonal window
to be processed (highlighted in yellow). The process_window task processes the four tiles
(the updated sections are highlighted in red) and outputs the local Qmatrix (highlighted in
dark green). Two of the modified tiles and the newly created local Q matrix are then fed to
the right_update task together with four additional S matrix tiles. These four additional
tiles describe the remaining part of the right_update task’s computational area. The
right_update task updates the six S matrix tiles (the updated sections are highlighted
with in blue) and one of them is later fed to the left_update task. The left_update task
also takes in one of the S matrix tiles processed by the process_window task, the local
Q matrix, and six S matrix tiles describing the remaining part of the left_update task’s

14

process_window

left_update

right_update

...

... ...

Figure 6: An example of how the S matrix data handles complicate the data flow chart.

computational area. The critical path is highlighted with thickened arrows.
It is vital to notice that one of the tiles introduces implicit dependency from the

right_update task to the left_update task. These type of spurious dependencies are
not easy to foresee in a general case and they may have a significant impact on perfor-
mance if not handled correctly. In this particular case, many of these dependencies could be
avoided by placing the diagonal windows such that their boundaries follow the boundaries
of the underlying tiles. Thus, the tile that would otherwise induce a spurious dependency
would no longer be shared between the right_update and the left_update tasks. If this
type of window placement is not possible, then the adverse effects could at least be miti-
gated by splitting the updates into smaller update tasks such that length (time to execute)
of the critical path (highlighted with thickened arrows in Figure 6) is reduced. For the
sake of simplicity, we will ignore these type of dependencies in most the figures presented
in the rest of this report.

Figure 7 shows a flow chart for a window chain that covers the whole diagonal. Note
that we always draw the flow charts from the top down but the window chain itself is
processed from bottom up. We have divided the updates into tasks such that each task
does the minimal amount of work necessary to proceed to the next task in the graph. This
is done to simplify the graph and in practice the task granularity can be much coarser. In
addition, we have simplified the graph by leaving out the dependencies between the right
and left updates as these dependencies are already force through the diagonal windows.
Note that those tasks that the last window is dependent on are all located to the top
right corner of the graph and are thus considered to be more important. In turn, all

15

W
R

W
R

W

R

L
R

WLL

R

R

R

WL

R

R

R

L L

WL

R

R

R

R

L L L

R

LL L LL

Figure 7: A data flow chart for a window chain that covers the whole diagonal. The diagonal
windows are highlighted with yellow color. The left and right updates that correspond to
the fourth window in the chain are highlighted with blue and green colors, respectively.
The entry point to the data flow chart is marked with a black circle. The critical triangle
is highlighted with dashed lines.

left_update tasks can be delayed until the very end because the diagonal windows do
not depend on them. The section of the S matrix that is touched by the process_window
and right_update tasks forms what we call a critical triangle. This critical triangle is a
concept that we will now study in greater detail.

Figure 8 shows a similar data flow chart for a window chain that does not cover the
whole diagonal. This figure introduces a new notation that will be used throughout the
remaining part of this report. The left side of the figure shows the various regions of the S
matrix that are being touched by the window chain (either by the process_window tasks
or by the related update tasks). Note that the critical triangle is highlighted in dark red.
The remaining left and right updates are highlighted with blue and green, respectively.
The right side of Figure 8 shows a simplified data flow chart. The area highlighted in dark
red corresponds to those tasks that the last window is dependent upon (cf. right side of
Figure 7). As mentioned earlier, these right_update tasks are considered to be critical.
The area highlighted in lighter red corresponds to those left_update tasks that operate
on the critical triangle. The remaining left_update and right_update tasks are again
highlighted in blue and green, respectively. Note the similarities between Figures 7 and 8.

The situation becomes more complicated when the reordering process involves multiple
window chains and we want to increase the level of parallelism by processing these windows
chains concurrently. Figure 9 shows the simplest case with two window chains. Note that
the flow chart has two independent entry points highlighted with the black circles. It is
clear that tasks operating on different critical triangles can be executed independently of
each another. This, of course, is good for parallelism. However, some left updates from
the upper windows chain overlap with some right updates from the lower window chain

16

Figure 8: A simplified data flow chart for a window chain that does not cover the whole
diagonal. Note that the entry point to the data flow chart is marked with a black circle.

Figure 9: An illustration of how two non-overlapping window chains interact with each
other.

as highlighted in the left side of Figure 9. This means that the order in which the task
are inserted to StarPU becomes an important factor as it defines the order in which the
overlapping area gets updated. In this situation, we can either apply the left updates from
the upper window chain first and then apply the right updates from the lower window
chain, or we can do the opposite. The important thing here is that the ordering stays
consistent across all updates.

From the data flow perspective, this means that the corresponding data flow charts are
not separate as drawn in right side of Figure 9. Instead, the areas highlighted with the
dashed rectangle merge together. In this simple case, the merged sections are relatively
small and the induced dependencies are highly localized. Thus, the situation does not nec-
essarily require any sophisticated features from the runtime system. An algorithm could
simply apply the right and left updates separately and synchronize after a set of inde-
pendent updates had been made. For example, the parallel PDTRSEN (see Subsection 2.4)
algorithm works roughly this way on individual window level.

The situation becomes even more complex when we extend our attention to cases where
the critical triangles are allowed to overlap. Figure 10 shows an example of such a situation.
We can distinguish six different cases where the computational areas of different task types

17

Figure 10: An illustration of how two overlapping window chains interact with each other.

from both window chains overlap. In particular, some tasks, which are related to the
critical triangle of the lower windows chain, are being blocked by the left update tasks that
are related to the upper window chain. This means that some left updates are actually
more important that others. In turn, all (right) updates that are related to the upper
window chain and operate sections above the lower window chain are not as important.
The interactions between the data flow charts are again highlighted in the right side of
Figure 10. Note how the two entry points are no longer independent of each other. We
have now reached the point where the number of different cases is too large to handle by
hand and more sophistication is expected from the runtime system. The question now
becomes how to insert the tasks to StarPU in the most effective manner.

4.5 Task insertion

Plan

Blueprint

Task insertion
engine

StarPU

Figure 11: The three key components of our StarPU implementation: plan, blueprint and
task insertion engine.

As pointed out in the previous subsection, the insertion of the tasks is not a trivial
matter. For this reason, we adopted a modular approach where the process of task insertion
is described in term of plans, blueprints, and a task insertion engine (see Figure 11):

18

Plan describes where the various diagonal windows are located and how they are con-
nected to each others.

Blueprint describes the order in which the tasks are to be inserted. Each blueprint is
implemented as an array of C enumerators / integers.

Task insertion engine interprets the plan and inserts the tasks to StarPU by following
the provided blueprint.

This modular design allow us to experiment with various ideas and answer questions
such as:

• In what order should we process the window chain? We could start from the topmost
window chains as described in Algorithm 1 or we could start from the bottom window
chain. The second approach might have some benefits as the bottom window chain
is likely to be the longest one and we may want to start processing it as soon as
possible.

• Should we delay some task? It might be a good idea to insert all high priority tasks
first and only later insert less important tasks. On the other hand, the number of
critical tasks that can be executed concurrently is not necessary large enough to
saturate all workers. This might cause a situation where many workers are idling at
the beginning.

• Should we pay attention to the critical path and the critical triangles?

• How should we assign priorities to tasks?

4.5.1 Planning phase

This section describes how our algorithm forms a plan that is later used to decide how the
tasks are inserted to StarPU. The following four terms are used throughout this report:

Window describes a diagonal reordering window. Each window has an index number, a
position and a size.

Window chain consists of multiple overlapping windows that are intended to be pro-
cessed in a particular order. The related windows are stored in a doubly linked
list.

Chain list consists of multiple window chains. The window chains can be processed in
a particular order or independently of each other as long as windows that belong to
different chains do not overlap. The window chains are stored in a doubly linked list.

Plan consists of multiple window lists that must be processed in a particular order. The
chain lists are stored in a doubly linked list.

19

Figure 12: An example of how the windows are placed on the diagonal such that their
upper left corners respect the boundaries of the underlying tiles. Note how the 2× 2 block
causes us to deviate from this rule and how all selected blocks always end up in the same
tile.

Presently, our implementation supports two different ways of forming a plan:

Single-part plan contains single chain lists that is formed similarly as described in Sec-
tion 3. The groups are selected such that all blocks in a group can be fitted inside a
single tile when clustered together. For example, if the tile size is 64× 64, then each
group contains at most 63 eigenvalues2. We always try to place the windows such
that their upper left corners follow the boundaries of the underlying tiles as shown
in Figure 12. Therefore, the window size is not fixed, but grows as the window chain
collects more and more (selected) blocks from the diagonal. The window size is ex-
plicitly limited to twice the size of the underlying tiles. This means that the top left
corners of the windows that belong to the same window chain are always separated
by a single tile. If necessary, each window is re-sized to avoid splitting any 2 × 2
blocks. However, the re-sizing is done in such a way that the number of tiles involved
with each process_window task is at most four and all selected blocks always end up
in the same tile. Thus, each diagonal tile is touched at most twice by each window
chain. All this is done to reduce the number of spurious dependencies that might be
otherwise induced if the windows were placed more freely. These choices also reduce
the amount of data that needs to be transferred across the MPI node boundaries.

Multi-part plan is derived from a single-part plan by splitting the associated chain list
into multiple chains lists as illustrated in Figure 13. The process is described in
Algorithm 2. Note that the chains that belong to the same chain list in Figure 13 are
independent from each other, that is, their critical triangles do not overlap. Thus,
we have effectively transformed a situation of the type shown in Figure 10, into a
situation of the type shown in Figure 9. However, the chain lists must be processed

2Each group should contain strictly less than tile size eigenvalues. See Figure 12. If the group contained
six selected blocks instead of the five shown in the figure, then the 2× 2 block in the center of the matrix
would cause a problem.

20

Figure 13: An illustration of how a single chain list containing four overlapping chains is
divided into three non-overlapping chains lists.

21

Algorithm 2: Formation of a multi-part plan
Data: A real Schur form S and a Boolean array that defines the selected subset of

the blocks along the diagonal of S.
Result: A multi-part plan plan for S and the given Boolean array.

1 Form a template chain list (a single-part plan) using S and the given Boolean array;
2 Form an empty plan plan;
3 while the template chain list is not empty do
4 Set end := top left corner of the matrix - 1;
5 Form an empty chain list list;
6 for window chains in the template chain list from the top down do
7 Form a empty window chain chain;
8 Remove those windows from the window chain whose top left corners are

located below end and add them to chain;
9 if chain is not empty then

10 Add chain to list;
11 Set end := bottom right corner of the bottom window in chain;
12 if the window chain is empty then
13 Remove the window chain from the template chain list;

14 if list is not empty then
15 Add list to plan;

in the order they were added to the multi-part plan in step 15 of Algorithm 2. Step 8
of Algorithm 2 is in reality slightly more complicated as the algorithm tries to avoid
situations where two window chains in a same chain list would touch a common tile.
A shared tile would induce additional spurious dependencies.
A multi-part plan is not suitable for all situations. For example, if a large proportion
of the diagonal blocks are selected, then each chain list would contain no more than a
few window chains. The same thing happens when the selected blocks are clustered
together. In an extreme case, each chain list would contain only one window chain
and each window chain would contain only one window. That is, the resulting multi-
part plan would be, in essence, equivalent with the original single-part plan.

4.5.2 Blueprints

This section describes a few of the various blueprints that are currently implemented.

One-pass forward blueprint leads to Algorithm 1 when the blueprint combined with
a single-part plan. In this configuration, our algorithm relies entirely on StarPU to
deduce all data dependencies. The main purpose of this blueprint is to serve as a
comparison for more advanced blueprints. The process_window tasks are always

22

Algorithm 3: One-pass forward blueprint
1 for chain lists in the plan do
2 for window chains in the chain list from the top down do
3 for windows in the window chain from the bottom up do
4 Insert the process_window task with priority max;
5 Insert the corresponding right_update tasks with the priority

max(default, max− 1);
6 Insert the corresponding left_update tasks with the priority default;
7 Insert the corresponding right_update tasks that update the Schur basis

Q with the priority min;

inserted with the highest priority because they form a part of the algorithm’s critical
path. The right_update tasks are given the second highest priority, because as
shown in Figure 7, the last window in the window chain depends upon some of
these right updates3. The left_update tasks are given higher priority than those
right_update tasks that update the Schur form Q as some left updates may prevent
a window chain below the current window chain from proceeding upwards. See
Algorithm 3 for more detailed description. Note that the blueprint does not have
any input data or any result. This is because each blueprint is simply a data structure
that gets interpreted by the tasks insertion engine.

Algorithm 4: Two-pass backward blueprint
1 for chain lists in the plan do
2 for window chains in the chain list from the bottom up do
3 for windows in the window chain from the bottom up do
4 Insert the process_window task with priority max;
5 Insert the corresponding right_update tasks with the priority

max(default, max− 1);

6 for window chains in the chain list from the bottom up do
7 for windows in the window chain from the bottom up do
8 Insert the corresponding left_update tasks with the priority default;
9 Insert the corresponding right_update tasks that update the Schur basis

Q with the priority min;

Two-pass backward blueprint differs from the one-pass forward blueprint in two im-
portant ways: the window chains are processed in a reverse order and the window

3The last window depends upon those right updates that operate on the critical triangle. Other right
updates are less important.

23

chains are processed in two separate phases. Both of these features require a multi-
part plan. The main purpose of this blueprint is to investigate the idea of inserting
the window chains in reverse order. See Algorithm 4 for more detailed description.

Algorithm 5: One-pass forward chained blueprint
1 for chain lists in the plan do
2 for window chains in the chain list from the top down do
3 Insert those process_window and right_update tasks that modify the

window chain’s critical triangle;
4 Insert all corresponding left_update tasks;
5 Insert the remaining (low priority) right_update tasks;
6 Insert all right_update tasks that update the Schur basis Q;

One-pass forward chained blueprint uses a completely different approach where the
critical triangle is inserted first and then followed by the related left_update tasks.
The exact details of how the tasks related to the critical triangle are inserted are
given in the next subsection. See Algorithm 5 for more detailed description.

Algorithm 6: One-pass backward chained blueprint
1 for chain lists in the plan do
2 for window chains in the chain list from the bottom up do
3 Insert those process_window and right_update tasks that modify the

window chain’s critical triangle;
4 Insert the remaining right_update tasks;
5 Insert all corresponding left_update tasks;
6 Insert all right_update tasks that update the Schur basis Q;

One-pass backward chained blueprint differs from the one-pass forward chained blue-
print in that the window chains are processed in a reverse order. Thus, it is very
similar to the two-pass backward blueprint and requires a multi-part plan. See Al-
gorithm 6 for more detailed description.

4.5.3 Task insertion engine

The blueprints described in the previous subsection left open the question of how the tasks
are actually inserted into StarPU. This subsection aims to answer this question.

The way how the left and right updates are divided into corresponding update tasks is
one of the deciding factor for the performance of the algorithm. We want to achieve two
objectives. Firstly, we want to guarantee that each process_window task induces enough
update tasks to saturate all workers threads. Secondly, we want to avoid introducing

24

Figure 14: An illustration of how updates are cut into tasks by using a 4× 4 stencil. The
stencil points where the cutting is performed are marked along the edges of the matrix.

spurious data dependencies. We achieve these objectives by forming a two-dimensional
stencil that divides the matrices both vertically and horizontally into P sections such that
the section size is a multiple of the tile size. Above, P is the number of worker threads.
This stencil cuts the right and left updates into tasks in vertical and horizontal directions,
respectively, as shown in Figure 14 with P = 4. Note how there are no vertical dependencies
between right_update tasks and no horizontal dependencies between left_update tasks.
If the implementation is being executed in a distributed memory environment, then special
care is taken to make sure that the stencil follows the boundaries of the underlying sections
(see Subsection 4.1).

Figure 15: An illustration of how process_window and right_update tasks that modify
the window chain’s critical triangle are inserted.

Right updates that modify the window chain’s critical triangle in the chained blueprints
are treated in a slightly different manner as shown in Figure 15. Diagonal windows are

25

processed in order starting from the window in the bottom right corner The current di-
agonal window is highlighted with red boundary. The rectangles highlighted with green
are the right updates which the current diagonal window depends upon. The preceding
right updates (highlighted with gray) have already been inserted. The task insertion en-
gine inserts the corresponding right_update tasks in order from right to left followed by
the process_window task. The process_window tasks are inserted with priority max and
right_update tasks with priority max(default, max− 1). The computational areas of the
right_update tasks are always “rounded” upwards such that their upper edges follow the
boundaries of the underlying tiles.

Our objective is to minimize the length of the critical path. What we mean by this can
be better understood by investigating the right side of Figure 15. The dotted arrows show
the dependencies between the preceding diagonal windows and the current right updates.
The solid arrows show the remaining dependencies between the right updates and the
diagonal windows. Since the process_window tasks are generally more expensive that
equally sized update tasks, the critical path is likely to be the one highlighted with red
arrows. We have divided the right updates into tasks such that each task does the minimal
amount of work necessary to proceed to the next task in the graph in an attempt to reduce
the length of the critical path.

-5 -4 -3 -2 -1

Figure 16: An illustration of how low priority update tasks are divided into priority groups.
In this example, we are using the priority range [−5, 0[. The longest update chain (on the
top) determines the number of update tasks assigned to each priority group. The groups
are filled in order, starting from the lower priority.

As the one-pass forward chained blueprint (see Algorithm 5) is designed to be used
with a single-part plan, all right_update tasks that operate sections above the critical
triangle are considered to be low priority tasks. The same applies to right_update tasks
that operate the Schur form Q in the other chained blueprints. However, simply assigning
priority min to these tasks can cause problems because when a window chain is inserted to
StarPU, the related update tasks form chains where each update is always dependent on
the previous update. These update chains can have varying lengths which may cause load
balancing issues. We have reserved the priority range [min, default[for these low priority
tasks. Our algorithm locates the longest update chain in the plan and uses its length as a

26

basis for dividing all low priority update tasks into priority groups as shown in Figure 16.
The chain length information is preserved when a single-part plan is transformed into a
multi-part plan. This priority assignment scheme aims to force StarPU to process the
update chains at an even rate.

Figure 17: An illustration of how the left update tasks are divided into priority groups.
Darker color signals higher priority.

As noted in Section 4.4, it is possible that some left_update tasks may prevent other
window chains from proceeding. Figure 17 shows an example where left_update tasks,
which correspond to the topmost window chain, could potentially prevent the two window
chain below it from proceeding. We are using the priority range [default,max(default, max−
1)[for assigning priorities for left_update tasks based on their importance when deal-
ing with chained blueprints. For each window chain in a chain list, our algorithm looks
downwards in the chain list and goes through all window chains below the current window
chain. The right side edges of the critical triangles of these window chains are used as a
stencil for grouping the left_update into priority groups. The priorities are assigned in
descending order from left to right.

The right_update tasks in the one-pass backward chained blueprint (see Algorithm 6)
are processed similarly. We are using the priority range [default,max(default, max− 1)[
for assigning priorities for right_update tasks. For each window chain in a chain list, our
algorithm looks upward in the chain list and goes through all window chains above the
current window chain. The upper edges of critical triangles of these window chains are
used as a stencil for separating the right_update into priority groups. The priorities are
assigned in descending order from the bottom up. The process is visualized in Figure 18.

4.6 Tunable parameters
The implementation has several tunable parameters:

• Plan and blueprint (more blueprint can be added with minimal effort)

27

Figure 18: An illustration of how left (on the left) and the right (on the left) update tasks
are divided into priority groups. Darker color signals higher priority.

• Tile size

• Section size (MPI specific parameter)

• Window size (can be set explicitly)

• Group size (can be set explicitly)

In addition, the following parameters are currently hard-coded but could be exposed to
the user in future:

• Size of the stencil discussed in Subsection 4.5.3 (see Figure 14)

• Window size used inside the process_window codelet (hard-coded to 128× 128)

• Size of the largest window to be reordered in scalar manner (hard-coded to 256×256)

If the window size is defined explicitly, then the implementation does not take into
account the underlying tile structure when it is placing the diagonal windows. We have
not found any evidence suggesting that the window size should be defined explicitly. In
addition, numerical experiments have shown that the number of selected eigenvalues in a
group should be half of the window size. Thus, these two parameters should be left to
their default values in most use cases.

5 Computational experiments
In this section we present computational results pertaining to reordering eigenvalues of
matrices in real Schur form using a shared memory machine and double precision arith-
metic. Our implementation can be configured to run on a distributed memory machine
using StarPU, but while the efficiency has improved recently, it is still quite low. In ad-
dition, we are currently working on fixing certain technical problems related to processing
larger matrices.

28

5.1 Computer system
All experiments where executed on a system called Kebnekaise, which is located in the
High Performance Computing Center North (HPC2N) at Umeå University4. Each compute
node contains 28 Intel Xeon E5-2690v4 cores organized into 2 NUMA islands with 14 cores
in each. The nodes are connected with a FDR Infiniband Network. Each CPU core has
32 KiB L1 data cache, 32 KiB L1 instruction cache and 256 KiB L2 cache. Moreover,
for every NUMA island there is 35 MiB of shared L3 cache. The total amount of RAM
per compute node is 128 GiB. A schematic representation of a compute node is as seen in
Figure 19.

Figure 19: A schematic representation of a compute node on the Kebnekaise system.

5.2 Test matrices
We designed a matrix generator which can build a complete experiment from a single
random seed and a small set of parameters (n, k, p). Here n is the dimension of the matrix
A, k is the number of diagonal 2× 2 blocks and p is the probability that the user selects a
given diagonal block. The generator is available from the authors on demand.

5.2.1 Construction of the Schur basis Q

The orthogonal matrix Q is generated as a single Householder reflector I−vvT . The vector
v is generated from the seed.

4See https://www.hpc2n.umu.se/resources/hardware/kebnekaise.

29

5.2.2 Construction of the Schur form S

The main problems are to choose a location for each 2 × 2 block along the diagonal of S
and to assign values to the nonzero entries of S. The locations of the 2 × 2 blocks are
determined as follows. The m = n − 2k real values must be interleaved with the 2 × 2
blocks. It follows, that the 1 × 1 blocks will form at most k + 1 groups. By choosing
m numbers from the set {0, 1, 2, . . . , k} we can assign each 1 × 1 to exactly one group.
Afterwards, we can count the number of 1× 1 block in each group. These counts uniquely
determine the location of all the 2× 2 blocks.

The complex eigenvalues are chosen at random from a discrete grid of points in the
upper half of the complex plane. This ensures all diagonal blocks can be swapped without
difficulty, because the tiny Sylvester equations in the swapping kernels are well conditioned.
The off diagonal entries of S are chosen at random, uniformly distributed in the interval
[0, 1).

5.2.3 Diagonal block selection process

There are k pairs of complex conjugate eigenvalues (one pair per 2×2 block) andm = n−2k
real eigenvalues (1 × 1 blocks). The user chooses each of the n − k diagonal blocks with
probability p. On average, the user chooses 2kp blocks of size 2× 2 blocks and mp blocks
of size 1 × 1 blocks. Therefore, the total number of selected eigenvalues is on average
2kp+mp = np.

5.3 Experimental methodology
Each experiment was repeated several times. The runtimes were saved and the median was
computed. Compared with the average, the median is much less sensitive to the effect of
outliers. Problems were generated from a random seed using the parameters listed below:

1. Matrix dimension n ∈ {10000, 20000, 30000, 40000}.

2. Number of 2 × 2 diagonal blocks k = n/4, that is, half of the eigenvalues belong to
complex conjugate pairs.

3. The user’s chance of choosing a specific diagonal block p ∈ {0.05, 0.15, 0.35, 0.50}.
Parallel experiments with P cores were always executed using cores 0 through P − 1.

5.4 Accuracy
Result are worthless if they are not accurate. With respect to all StarPU experiments
reported in this paper the following statements hold true:

1. For each eigenvalue λ̂ in the updated Schur form Ŝ, we have the relative error bound

|λ− λ̂|
|λ|

. 900u. (2)

30

where λ is the original value of the eigenvalue.

2. For each reordered Schur decomposition Â = Q̂ŜQ̂T we have a relative backward
error bound

‖A− Â‖F

‖A‖F

. 190u. (3)

where A = QSQT is the original matrix.

3. For each new Schur basis Q̂, we have

‖Q̂T Q̂− I‖F

‖I‖F

. 315u, (4)

which shows that the orthogonality is very nearly preserved.

Above, u = 2−52 is the machine epsilon. In exact arithmetic, the errors should be
zero. The small values that we have obtained merely serve to illustrate the our StarPU
implementation does not contain any obvious errors and that our test problems are well
conditioned.

5.5 Time to solve
We report on the speed of our StarPU implementation relative to the existing ScaLAPACK
routine PDTRSEN. We compare the case of 28 MPI ranks to the case of 28 StarPU workers,
i.e. full utilization of a single node on Kebnekaise. The results are illustrated in Figure 20.
Across all performed experiments, the StarPU implementation is between 1.3 and 7.8 times
faster that the PDTRSEN subroutine. On average, the StarPU implementation is 2.9 times
faster. The performance difference increases when the matrix dimension and/or the CPU
core count are increased. In addition, the StarPU implementation appears to perform
much better when a fewer number of diagonal blocks are selected.

5.6 Sequential execution
We report on the time Ts to solve problems using single-threaded code and compare our
code to the sequential blocked code BDTRSEN. This is an important measurement, because
it allows us to determine the best sequential code and establish a baseline against which
all parallel speedups can be computed. Our results are shown in Figure 21. We note
the paradoxical result that our StarPU implementation which uses BDTRSEN as a kernel,
is somewhat faster than BDTRSEN running alone. It remains an open problem to fully
explain this situation, but the fact that the window size can be chosen more freely in our
implementations is probably a major factor5. This allows us to have larger update tasks
which causes fewer and larger DGEMM operations, hence a higher flop rate.

5See Subsection 5.10 for a more in depth explanation.

31

 0

 50

 100

 150

 200

 250

10000 20000 30000 40000

R
u
n
ti

m
e
 [

s]

Matrix dimension

MPI versus StarPU / Kebnekaise / 5% selected

MPI (28 ranks)
StarPU (28 workers)

(a) 5% selected

 0

 50

 100

 150

 200

 250

 300

10000 20000 30000 40000

R
u
n
ti

m
e
 [

s]

Matrix dimension

MPI versus StarPU / Kebnekaise / 15% selected

MPI (28 ranks)
StarPU (28 workers)

(b) 15% selected

 0

 100

 200

 300

 400

 500

 600

10000 20000 30000 40000

R
u
n
ti

m
e
 [

s]

Matrix dimension

MPI versus StarPU / Kebnekaise / 35% selected

MPI (28 ranks)
StarPU (28 workers)

(c) 35% selected

 0

 100

 200

 300

 400

 500

 600

 700

10000 20000 30000 40000

R
u
n
ti

m
e
 [

s]

Matrix dimension

MPI versus StarPU / Kebnekaise / 50% selected

MPI (28 ranks)
StarPU (28 workers)

(d) 50% selected

Figure 20: Comparison of the runtime for PDTRSEN from ScaLAPACK and our new StarPU
implementation. The number of selected diagonal blocks relative to the matrix size runs
through the values 5, 15, 35, and 50 percent. Observe that the scale on the y-axis varies
between sub-figures.

32

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

10000 20000 30000 40000

R
u
n
ti

m
e
 [

s]

Matrix dimension

StarPU runtime / Kebnekaise / 5% selected

BDTRSEN
1 worker

4 workers
12 workers
20 workers
28 workers

(a) 5% selected

 0

 500

 1000

 1500

 2000

 2500

10000 20000 30000 40000

R
u
n
ti

m
e
 [

s]

Matrix dimension

StarPU runtime / Kebnekaise / 15% selected

BDTRSEN
1 worker

4 workers
12 workers
20 workers
28 workers

(b) 15% selected

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

10000 20000 30000 40000

R
u
n
ti

m
e
 [

s]

Matrix dimension

StarPU runtime / Kebnekaise / 35% selected

BDTRSEN
1 worker

4 workers
12 workers
20 workers
28 workers

(c) 35% selected

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

10000 20000 30000 40000

R
u
n
ti

m
e
 [

s]

Matrix dimension

StarPU runtime / Kebnekaise / 50% selected

BDTRSEN
1 worker

4 workers
12 workers
20 workers
28 workers

(d) 50% selected

Figure 21: The runtime of the sequential code BDTRSEN and our StarPU implementation.
The number of selected diagonal blocks relative to the matrix size runs through the values
5, 15, 35, and 50 percent. Observe that the scale on the y-axis varies between sub-figures.

33

 0

 0.2

 0.4

 0.6

 0.8

 1

 4 8 12 16 20 24 28

N = 40,000 for 28 cores

E
ffi

ci
e
n
cy

CPU cores / StarPU workers

Weak scalability / StarPU / Kebnekaise

5% selected
15% selected
35% selected
50% selected

Figure 22: Weak scalability of our StarPU implementation.

5.7 Scalability
The scalability of a program measures its response to an increase in the number of proces-
sors. In the context of high performance computing we are interested in weak and strong
scalability. In both case we report on the parallel efficiency ρ given by

ρ = Ts

PTP

, (5)

where Ts is the serial execution time and TP is the parallel execution time using P cores.
We devote one section to each concept.

5.7.1 Weak scalability

Weak scalability refers to the situation where the problem size per processor is constant
as the number of processors is increased. Here we report on the weak scalability efficiency
obtained by scaling our largest problem (n = 40, 000) from P = 28 down to P = 1 cores.
Our results are plotted in Figure 22. We are pleased to report that the efficiencies are well
above 60%. Except for some minor bumps the curves are monotone decreasing exactly as
one would expect.

34

5.7.2 Strong scalability

Strong scalability refers to the situation where the problem size is constant as the number
of processors is increased. Here we report on strong scalability efficiency. Our results are
given in Figure 23. Ideally, one would like to obtain curves which are monotone and slowly
decreasing. This is very nearly true for our experiments with a noteworthy exception
being represented by the cases of 5% and 15% percent selected diagonal blocks. In general,
shorter runs are more sensitive to disruptions beyond our control, i.e. intervention by the
operating system, so we are not surprised to record bumps when the computational load
is rather light.

5.8 Flop-rate
The flop rate should be measured relative to the theoretical peak flop rate which depends
on the clock frequency, the core count, the width of the SIMD registers and the number
of instructions a core can retire per cycle. The clock frequency depends on the number
of active cores per NUMA island. On Kebnekaise the AVX base frequency is 2.1 GHz
and the boost frequencies are given in Table 1. Consider a single NUMA island. If only a
single core is active, then the boost is 14 · 100 MHz = 1.4 GHz and the clock frequency is
therefore 3.5 GHz. If all 14 cores are active, then the boost is only 8 · 100 MHz and the
clock frequency is 2.9 GHz for each core. The cores support the AVX2 instruction set and
have 256 bit vector registers. This corresponds to a vector length of 4 double precision
numbers. The cores can retire 2 fused multiply–add instructions per cycle. The theoretical
flop rate is therefore 16 flops per cycle for each core (two flops per instruction). The peak
flop rate for a full node (2 NUMA islands) is therefore

28 · 16 flops/cycle · 2.9 gigacycles/s = 1299 Gflops/s.

active cores 1 2 3 4 5 6 7 8 9 10 11 12 13 14
boost 14 14 12 11 10 9 8 8 8 8 8 8 8 8

Table 1: AVX2 boost table for compute nodes on Kebnekaise. The boost is given in
multiples of 100 MHz. The boost is a decreasing function of the number of active cores,
reflecting the difficulty of providing adequate power and cooling when the node is run at
full capacity.

Our results are presented in Figure 24. The curves represent lower bounds on our
relative flop rate, as we have only included the flops performed during the row and column
operations, i.e. matrix-matrix multiplications. The flops performed within each window
are more difficult to count and have not been included. We are pleased to note that the
lower bound for the relative flop rate is well above 50% for all but the smallest matrices
and the lowest number of selected diagonal blocks. Ideally, one would expect to obtain
curves which are monotone decreasing. In practice, the occasional bumps are unavoidable

35

 0

 0.2

 0.4

 0.6

 0.8

 1

 4 8 12 16 20 24 28

E
ffi

ci
e
n
cy

CPU cores / StarPU workers

Strong scalability / StarPU / Kebnekaise / 5% selected

N = 10000
N = 20000
N = 30000
N = 40000

(a) 5% selected

 0

 0.2

 0.4

 0.6

 0.8

 1

 4 8 12 16 20 24 28

E
ffi

ci
e
n
cy

CPU cores / StarPU workers

Strong scalability / StarPU / Kebnekaise / 15% selected

N = 10000
N = 20000
N = 30000
N = 40000

(b) 15% selected

 0

 0.2

 0.4

 0.6

 0.8

 1

 4 8 12 16 20 24 28

E
ffi

ci
e
n
cy

CPU cores / StarPU workers

Strong scalability / StarPU / Kebnekaise / 35% selected

N = 10000
N = 20000
N = 30000
N = 40000

(c) 35% selected

 0

 0.2

 0.4

 0.6

 0.8

 1

 4 8 12 16 20 24 28

E
ffi

ci
e
n
cy

CPU cores / StarPU workers

Strong scalability / StarPU / Kebnekaise / 50% selected

N = 10000
N = 20000
N = 30000
N = 40000

(d) 50% selected

Figure 23: The strong scalability efficiency of our StarPU implementation. The number of
selected diagonal blocks relative to the matrix size runs through the values 5, 15, 35, and
50 percent.

36

and not necessarily reproducible from one day to the next. In particular, it remains an
open problem to explain the bumps which are evident in Figure 24a and Figure 24b.

5.9 Idle time and overhead
Worker threads executing code under a runtime system such as StarPU are either busy
doing useful work, waiting for tasks to become available (idle time) or running the system
itself (parallel overhead). Ideally, we want all cores to be fully engaged with the main
calculation at all times, but this is of course not possible in general. StarPU has the
ability to record the time spent in each activity. In addition, we included StarPU startup
and shutdown times to the reported overhead. Here we report on the idle time and the
overhead as a fraction of the total execution time. Our results are presented in Figure 25.
In general, the impression is favorable and the workers are almost always moving the
computation along, especially when the problem size is large and a large fraction of diagonal
blocks has been selected. If we omit the smallest problem size and the case of 5% selected
diagonal blocks, then all workers are devoting more than 95% of their time to advancing the
computation. There is significant amount of time lost to idling when only 5% are selected
and the worker count is high. This is hardly surprising as we are trying to schedule a small
load across a large number of workers.

5.10 Tunability
Based on our experiences, the tile size appears to be the most important parameter. It
has implications both for the data layout and the dependence tracking in StarPU. In
particular, if the window and group sizes are left undefined, then the tile size defines the
task granularity. Preliminary parameter value sweeps suggest that the optimal tile size
depends linearly on the matrix dimension. Thus, we fitted a linear regression model to our
sweep data. The resulting decision function is

b̃(n) =
⌈ 14

625 n+ 184
5

⌉
8
, (6)

where d·e8 rounds upwards to the next multiple of 8. This function gives a near optimal
tile size for a given matrix dimension n. In practice, we ended limiting the tile size to

b(n, P) = max
(

64,min
(
b̃(n),

⌈
n

2P

⌉
8

))
, (7)

where P is the worker count. The upper limit guarantees that each diagonal window
induces enough update tasks to saturate all workers.

These preliminary parameter value sweeps also motivated us to experiment with the
idea of reordering the diagonal windows in blocked manner. In the beginning, we noticed
that if the diagonal windows are reordered in a scalar manner, then the connection between
the matrix dimension and the optimal tile size is not linear. Instead, the optimal tile size
appeared to have an upper limit. This would have limited us to using smaller tile size

37

 0

 0.2

 0.4

 0.6

 0.8

 1

 4 8 12 16 20 24 28

E
ffi

ci
e
n
cy

CPU cores / StarPU workers

Floating-point performance / Kebnekaise / 5% selected

N = 10000
N = 20000
N = 30000
N = 40000

(a) 5% selected

 0

 0.2

 0.4

 0.6

 0.8

 1

 4 8 12 16 20 24 28

E
ffi

ci
e
n
cy

CPU cores / StarPU workers

Floating-point performance / Kebnekaise / 15% selected

N = 10000
N = 20000
N = 30000
N = 40000

(b) 15% selected

 0

 0.2

 0.4

 0.6

 0.8

 1

 4 8 12 16 20 24 28

E
ffi

ci
e
n
cy

CPU cores / StarPU workers

Floating-point performance / Kebnekaise / 35% selected

N = 10000
N = 20000
N = 30000
N = 40000

(c) 35% selected

 0

 0.2

 0.4

 0.6

 0.8

 1

 4 8 12 16 20 24 28

E
ffi

ci
e
n
cy

CPU cores / StarPU workers

Floating-point performance / Kebnekaise / 50% selected

N = 10000
N = 20000
N = 30000
N = 40000

(d) 50% selected

Figure 24: A lower bound for the flop rate of our StarPU implementation relative to the
peak flop rate for the specific selection of cores. The number of selected diagonal blocks
relative to the matrix size runs through the values 5, 15, 35, and 50 percent.

38

 0

 0.2

 0.4

 0.6

 0.8

 1

Po
rt

io
n
 o

f
e
xe

cu
ti

o
n
 t

im
e

Matrix dimension : StarPU workers

Runtime distribution / Kebnekaise / 5% selected

Executing
Idle

Overhead

40000300002000010000

(a) 5% selected

 0

 0.2

 0.4

 0.6

 0.8

 1

Po
rt

io
n
 o

f
e
xe

cu
ti

o
n
 t

im
e

Matrix dimension : StarPU workers

Runtime distribution / Kebnekaise / 15% selected

Executing
Idle

Overhead

40000300002000010000

(b) 15% selected

 0

 0.2

 0.4

 0.6

 0.8

 1

Po
rt

io
n
 o

f
e
xe

cu
ti

o
n
 t

im
e

Matrix dimension : StarPU workers

Runtime distribution / Kebnekaise / 35% selected

Executing
Idle

Overhead

40000300002000010000

(c) 35% selected

 0

 0.2

 0.4

 0.6

 0.8

 1

Po
rt

io
n
 o

f
e
xe

cu
ti

o
n
 t

im
e

Matrix dimension : StarPU workers

Runtime distribution / Kebnekaise / 50% selected

Executing
Idle

Overhead

40000300002000010000

(d) 50% selected

Figure 25: The idle time and the overhead of our StarPU implementation relative to the
total runtime. Each sub-figure corresponds to a specific fraction of the diagonal blocks,
specifically, 5, 15, 35, and 50 percent of the total. Within each figure, the results are
grouped by matrix dimension. Within each group, the StarPU worker count runs through
the numbers 1, 4, 8, 12, 16, 20, 24, and 28 as we move left to right.

39

Figure 26: An example of a trace plot generated by the StarPU. The matrix dimension is
4000 × 4000 and 15% of the diagonal blocks are selected. From top down: total number
of inserted tasks that are not yet issued to the worker threads, number of tasks that are
ready to be issued to the worker threads, total flop rate, amount of allocated memory,
statuses of the four worker threads (active task and flop rate), and status of the main
thread. The red color corresponds to idle time, light green color to process_window tasks,
teal (bluish green) color to all right_update tasks and moss green (yellowish green) color
to left_update tasks. The horizontal axis shows the wall-time in milliseconds.

which would lead to larger overhead. Actually, the benefits of the blocked approach are
more extensive than we expected. There are two reasons for this: Firstly, larger tile
size leads to larger update tasks which further leads to higher flop rates in the related
DGEMM kernels. Secondly, we will actually benefit from the blocked approach even when the
diagonal windows are relatively small. This is because we have multiple worker threads
running in parallel and the L3 cache, from which the scalar algorithm would otherwise
benefit from, is shared among multiple cores. Thus, although a simpler scalar algorithm
would usually outperform a more complicated blocked algorithm when executed alone in
a vacuum, the blocked algorithm will actually outperform it in a multi-threaded situation.

The computational experiments were performed using the one-pass forward chained
blueprint (see Algorithm 5). Investigation into various blueprints is still undergoing but a
trace plot shown in Figure 26 gives some reasons to think that that the blueprint actually
works as intended. In particular, note how the process_window tasks are completed at the
very beginning while low priority right_update tasks are delayed to the very end. In addi-
tion, multiple process_window tasks are being executed concurrently. Since the reordering

40

process involves multiple window chains in this particular case, some left_update tasks
are given higher priority. This can also be seen in the plot.

6 Conclusion and future work
Above all, our work illustrates the power of task based approach. For the problem of
reordering the eigenvalues of a matrix in real Schur form we are able to achieve a significant
reduction of the time to solution compared with PDTRSEN in ScaLAPACK when running on a
single node (28 cores) of the Kebnekaise system. More importantly, we have been able to
make excellent use of the available resources. We have recorded strong and weak parallel
scaling efficiencies well above 50% and routinely achieve more than 50% of the peak flop
rate.

We are currently working to reconfigure and further develop the code to run properly
on a distributed memory machine under StarPU. We are working with the team developing
StarPU to resolve related issues. The next step is to extend our algorithm and its StarPU
realization the generalized eigenvalue problem for real matrices A and B. Here we will be
able to capitalize on the work that we have already completed as the underlying principles
are the same. We anticipate even fewer problems when addressing the standard and the
generalized eigenvalue problem for complex matrices, since there are no 2× 2 blocks which
require special attention.

It has proven difficult in the extreme to tune our subroutines automatically. Obtaining
reliable runtimes for a subroutine with a very short runtime is nearly impossible due to the
non-deterministic properties of modern computers. Our efforts to simulate our subroutines
have regrettably resulted in limited success so far. Obviously, we will continue to investigate
this matter.

Acknowledgements
This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No. 671633. Support has also been received
from eSSENCE, a collaborative e-Science programme funded by the Swedish Government
via the Swedish Research Council (VR). All experiments have been conducted using the
computing resources available at the High Performance Computing Center North (HPC2N)
at Umeå University. We would like to thank the StarPU development team of responding
with speed and accuracy for our comments, questions and suggestions. Moreover, we thank
Prof. Daniel Kressner (EPFL) for allowing us to use the sequential blocked BDTRSEN code
as a kernel and Lic. Björn Adlerborn (Umeå University) for providing the data that was
used in the comparison against the PDTRSEN algorithm.

41

References
[1] StarPU — A Unified Runtime System for Heterogeneous Multicore Architectures.

http://starpu.gforge.inria.fr/.

[2] B. Adlerborn, B. Kågström, and D. Kressner. A Parallel QZ Algorithm for Distributed
Memory HPC Systems. SIAM J. Sci. Comput., 36(5):C480–C503, 2014.

[3] Z. Bai and J. W. Demmel. On swapping diagonal blocks in real Schur form. Linear
Algebra Appl., 186:73–95, 1993.

[4] R. Granat, B. Kågström, and D. Kressner. Parallel eigenvalue reordering in real Schur
forms. Concurrency and Computation: Practice and Experience, 21(9):1225–1250, 2009.

[5] R. Granat, B. Kågström, D. Kressner, and M. Shao. ALGORITHM 953: Parallel
Library Software for the Multishift QR Algorithm with Aggressive Early Deflation.
ACM Trans. Math. Software, 41(4):Article 29:1–23, 2015.

[6] B. Kågström and P. Poromaa. Computing eigenspaces with specified eigenvalues of a
regular matrix pair (A,B) and condition estimation: theory, algorithms and software.
Numer. Algorithms, 12(3-4):369–407, 1996.

[7] D. Kressner. Block Algorithms for Reordering Standard and Generalized Schur Forms.
ACM Transactions on Mathematical Software, 32(4):521–532, December 2006.

42

	NLAFET-WN11-1st-page
	NLAFET-WN11-Myllykoski-et-al-170530

